
Stat260/CS294: Randomized Algorithms for Matrices and Data

Lecture 10 - 10/07/2013

Lecture 10: Fast Random Projections and FJLT, cont.

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

10 Fast Random Projections and FJLT, Cont.

We continue with the discussion from last time. There is no new reading, just the same as last class.

Today, we will cover the following.

• We will describe a fast algorithm to compute very fine approximations to the leverage scores
of an arbitrary tall matrix.

• We will describe a few subtleties to extend this basic algorithm to non-tall matrices, which
is of interest in extending these LS ideas to low-rank matrix approximation.

• We will describe how to use this algorithm in a fast random sampling algorithm for the LS
problem (that has a running time that is essentially the same as the fast random projection
algorithm that we discussed last time).

Today will basically wrap up our worst-case theory discussion for the LS problem. Next time, we
will start to discuss how these ideas can be used in practice in high-quality implementations for
the overdetermined LS problem.

10.1 Computing leverage scores quickly for a tall matrix

The leverage scores for a tall n×d matrix A, with n� d, are the diagonal elements of the projection
matrix onto the column span of A. Equivalently, they are the Euclidean norms of the rows of any
n × d orthogonal matrix U spanning the column span of A. Thus, a straw-man algorithm is to
perform a QR decomposition of the SVD on A and read off the leverage scores. This takes O(nd2)
time, and so this represents what our fast algorithm should beat.

The basic idea behind the fast algorithm to approximate leverage quickly is to use the “R” matrix,
not from a QR decomposition of the original matrix A, but from a random sketch of A of the
form Π1A, where Π1 is a FJLT. Equivalently, the idea is to use a “randomized sketch” of the form
A (Π1A)†Π2, where Π1 is an FJLT and Π2 is a JLT. To see this, recall that if `i is the ith leverage

1



score, then

`i =
∥∥U(i)

∥∥2

2
=
∥∥eTi U∥∥2

2
=

∥∥eiUUT∥∥2

2
(1)

=
∥∥∥eiAA†∥∥∥2

2
=

∥∥∥∥(AA†)(i)

∥∥∥∥2

2

. (2)

Viewed this way, the hard part of computing `i via Eqn. (1) is to compute the U matrix, which
takes O(nd2) time; and that hard part of computing `i via Eqn. (2) is first to compute A† and
second to do the matrix multiplication between A and A†, each of which take O(nd2) time.

While Eqn. (2) might seem more difficult to work with, we can insert random projections at
appropriate places to speed up both steps. In particular, we have the following.

`i =
∥∥∥eiAA†∥∥∥2

2

≈
∥∥∥eiA (Π1A)†

∥∥∥2

2
= ˆ̀

i

≈
∥∥∥eiA (Π1A)†Π2

∥∥∥2

2
= ˜̀

i.

In these expressions, A ∈ Rn×d, Π1 ∈ Rr1×n, where r1 = O
(
d log(d)

ε

)
, in which case Π1A ∈ Rr1×d

and (Π1A)† ∈ Rd×r1 .

That is, we compute the pseudo inverse of the smaller matrix Π1A, rather than A.

But, computing the product of A and (Π1A)† takes O(ndr) time, which is Ω(nd2) time, since

r ≈ d log(d)
ε . On the other hand, we only need estimates of the Euclidean norms of the rows, and so

we can do a second random projection by Π2 ∈ Rr1×r2 , where r2 = O (log(n)), which if the matrices
are multiplied in the proper order is faster.

(As an aside, we note that the sketch A (Π1A)†Π2 can be used in other ways, e.g., to estimate
the dot products between different rows of U , which is of interest since the so-called cross leverage
scores are defined to be cij = UT(i)U(j), i.e., the off-diagonal elements of the projection matrix. Also,

the so-called coherence is γ = maxi `i, although it is sometimes defined to be maxij cij .)

With this motivation, here is the main algorithm for computing approximations to the leverage
scores quickly.

Algorithm 1 The FastApproximateLeverageScores algorithm.

Input: A ∈ Rn×d, with SVD A = UΣV T , and ε ∈ (0, 1/2].
Output: ˜̀

i, for i ∈ [n]

1: Let Π1 ∈ Rr1×n be an ε-FJLT for U , with r1 = Ω
(
d log(n)
ε2

log
(
d log(n)
ε2

))
.

2: Compute Π1A ∈ Rr1×d and its QR decomposition or SVD. Let R ∈ Rr×r be the “R” matrix
from QR or ΣΠ1AV

T
Π1A

from SVD.

3: View the rows of AR−1 ∈ Rn×d as n vectors in Rd, and let Π2 ∈ Rd×r2 be an ε-JLT for n2

vectors (the n vectors and the
(
n
2

)
pairwise sums), with r2 = O

(
log(n)
ε2

)
.

4: Construct Ω = AR−1Π2.
5: For all i ∈ [n], compute and return ˜̀

i =
∥∥Ω(i)

∥∥2

2
.

Here is the main theorem that we can establish for this algorithm.

2



Theorem 1 The FastApproximateLeverageScores algorithm returns ˜̀
(i) such that∣∣∣`i − ˜̀

i

∣∣∣ ≤ ε`i,
for all i ∈ [n], with constant probability. The running time is

O
(
nd log (d/ε) + ndε−2 log(n) + d3ε−2 log(n) log

(
dε−1

))
(assuming that d ≤ n ≤ ed, with a more complicated expression otherwise).

Before presenting the main proof, let’s start with an outline of the proof, which will follow the

discussion above. The algorithm compute ˜̀
i =

∥∥∥Ũ(i)

∥∥∥2

2
, where Ũ(i) = eTi A (Π1A)†Π2. The first

thing to note is that we need to be not naive about the order of operations, e.g., don’t multiply
AR−1Π2 in the wrong order; and also that Π2 is included only to improve the (worst case FLOPS)
running time. That is, the quality-of-approximation result holds if Π2 is not there, and in certain
implementations the algorithm might be faster/better without it. So, if we can establish what we
want without the Π2, then including it is a JL transformation and doesn’t change the distances (in
particular the norms of the rows) too much.

So, the result will follow if

ei = A (Π1A)†
(

(Π1A)†
)T

ej = eiUU
T ej

and if Π1A is efficient to compute. But since Π1 is an FJLT, to compute the quantity (Π1A)† takes
O
(
nd log (r1) + r1d

2
)

time. Then, by the structural lemma from the end of last class, we have that

(Π1A)† = V Σ−1 (Π1U)† ,

which recall is false in general but holds when rank is preserved. So,

eiA (Π1A)†
(

(Π1A)†
)T

AT ej = eiU (Π1U)†
(

(Π1U)†
)T

UT ej .

Since Π1 is an FJLT, we have that

(Π1U)†
(

(Π1U)†
)T
≈ Id,

from which the theorem will follow.

Note also that this analysis is more general, e.g., it shows that we can compute the large cross-
leverage scores. To extract them, however, takes additional work, which basically amounts to using
a “heavy hitter” algorithm to find the large ones without looking at all

(
n
2

)
possibilities. This can

be done—see DMMW—but we won’t describe it here.

Now onto the proof of Theorem 1.

Proof: We will condition our analysis on the following two events, each of which holds with constant
probability if we choose parameters correctly.

Event 1 : Π1 ∈ Rr1×n is an ε-FJLT for U

Event 2 : Π2 ∈ Rr1×r2 is an ε-JLT for the

(
n

2

)
points we described.

3



Then, let’s define the following “hatted” and “tilded” quantities

Û(i) = eiA (Π1A)† ˆ̀
i =

∥∥∥Û(i)

∥∥∥2

2

Ũ(i) = eiA (Π1A)†Π2
˜̀
i =

∥∥∥Ũ(i)

∥∥∥2

2
,

where the hatted quantities correspond to one level of approximation (with Π1) and the tilded
quantities correspond to a second level of approximation (with Π2). The theorem will follow if we
show that

UT(i)U(j) ≈ ÛT(i)Û(j)

and also that
ÛT(i)Û(j) ≈ ŨT(i)Ũ(j)

with appropriate parameters.

More precisely, we need to establish the following two results.

Lemma 1 For all i, j ∈ [n], we have that∣∣∣UT(i)U(j) − ÛT(i)Û(j)

∣∣∣ ≤ ε

1− ε
∥∥U(i)

∥∥
2

∥∥U(j)

∥∥
2

Lemma 2 For all i, j ∈ [n], we have that∣∣∣ÛT(i)Û(j) − ŨT(i)Ũ(j)

∣∣∣ ≤ 2ε
∥∥∥Û(i)

∥∥∥
2

∥∥∥Û(j)

∥∥∥
2

Before proving these two lemmas, let’s say what they mean and how they imply the results of the
theorem.

First, observe that Lemma 1 says that the leverage scores (for i = j; respectively, the cross-leverage
scores for i 6= j) are preserved to within relative (respectively, additive) error, i.e., the action of
Π1 doesn’t distort them too much. (Viewing this in terms of approximate matrix multiplication,
if i = j then the two matrices/vectors are aligned with no cancellation, while if i 6= j they will in
general not be, and so there might be cancellation, in which case obtaining relative error bounds
isn’t possible.)

Second, Lemma 2 says the same thing for the action of applying Π2. In particular, by Lemma 1 it
follows that ∣∣∣`i − ˆ̀

i

∣∣∣ ≤ ε

1− ε
`i,

and by Lemma 2 it follows that ∣∣∣ˆ̀i − ˜̀
i

∣∣∣ ≤ 2εˆ̀i.

Finally, by combining these results, it follows that∣∣∣`i − ˜̀
i

∣∣∣ ≤ ∣∣∣`i − ˆ̀
i

∣∣∣+
∣∣∣ˆ̀i − ˜̀

i

∣∣∣
≤

(
ε

1− ε
+ 2ε

)
`i

≤ 4ε`i,

4



where the first inequality follows from the triangle inequality, the second inequality follows by
applying the two lemmas, and the last inequality follows since ε ≤ 1/2. From this, the quality-of-
approximation claims of the theorem theorem follow. So, let’s prove those two lemmas.

Proof:[of Lemma 1] Let A = UΣV T , and recall that (Π1A)† = V Σ−1 (Π1U)†. Then,

ÛT(i)Û(j) = eiA (Π1A)†
(

(Π1A)†
)T

AT ej

= eiUΣV TV Σ−1 (Π1U)†
(

(Π1U)†
)T

Σ−1V TV ΣUT ej

= eiU (Π1U)†
(

(Π1U)†
)T

UT ej

Thiu, it follows that∣∣∣UT(i)U(j) − ÛT(i)Û(j)

∣∣∣ =

∣∣∣∣eiUUT ej − eiU (Π1U)†
(

(Π1U)†
)T

UT ej

∣∣∣∣
=

∣∣∣∣eiU (I − (Π1U)†
(

(Π1U)†
)T)

UT ej

∣∣∣∣
≤

∥∥∥∥I − (Π1U)†
(

(Π1U)†
)T∥∥∥∥

2

∥∥U(i)

∥∥
2

∥∥U(j)

∥∥
2
.

Since Π1U = UΠ1UΣΠ1UV
T

Π1U
and (Π1U)†

(
(Π1U)†

)T
= VΠ1UΣ−2

Π1U
V T

Π1U
, it then follows that∣∣∣UT(i)U(j) − ÛT(i)Û(j)

∣∣∣ =
∥∥∥I − VΠ1UΣ−2

Π1U
V T

Π1U

∥∥∥
2

∥∥U(i)

∥∥
2

∥∥U(j)

∥∥
2

=
∥∥∥I − Σ−2

Π1U

∥∥∥
2

∥∥U(i)

∥∥
2

∥∥U(j)

∥∥
2

=
ε

1− ε
∥∥U(i)

∥∥
2

∥∥U(j)

∥∥
2
,

which establishes the lemma.
�

Proof:[of Lemma 2] Since Π2 is and ε-JLT, it preserves the norm of n2 vectors. Let xi = Û(i)/
∥∥∥Û(i)

∥∥∥
2
,

and consider the following n2 vectors:

xi i ∈ [n]

xi + xj i, j ∈ [n], i 6= j.

By the ε-JLT property, and since ‖xi‖2 = 1, it follows that:

1− ε ≤ ‖xiΠ2‖2 ≤ 1 + ε ∀i
(1− ε) ‖xi + xj‖22 ≤ ‖(xi + xj) Π2‖22 ≤ (1 + ε) ‖xi + xj‖22 ∀i.j s.t. i 6= j.

If we combine these, expand the squares, and use that ‖α+ β‖22 = ‖α‖22 + ‖β‖22 +2αTβ, for vectors
α and β, and use that ‖x‖2 = 1, we have that

xTi xj − 2ε ≤ (xiΠ2)T (xjΠ2) ≤ xTi xj + 2ε.

If we multiply through by
∥∥∥Û(i)

∥∥∥
2

∥∥∥Û(j)

∥∥∥
2

and then use the homogeneity of the inner product, we

get that

ÛT(i)Û(j) − 2ε
∥∥∥Û(i)

∥∥∥
2

∥∥∥Û(j)

∥∥∥
2
≤
(
Û(i)Π2

)T (
U(j)Π2

)
≤ ÛT(i)Û(j) + 2ε

∥∥∥Û(i)

∥∥∥
2

∥∥∥Û(j)

∥∥∥
2
,

5



which establishes the lemma.
�

For the running time, here is a summary.

• Computing Π1A takes time O (nd log(r1)).

• Computing the SVD of Π1A takes time O
(
r1d

2
)
.

• Computing R−1Π2 takes time O
(
r2d

2
)
.

• Premultiplying by A takes time O (ndr).

Thus, the overall running time is O
(
nd log(r1) + ndr2 + r1d

2 + r2d
2
)
, which by the choice of the

various parameters is O
(
nd log(n) + d3 log(n) log(d)

)
time.

Combining these results establishes the theorem.
�

10.2 Using the fast leverage score approximation algorithm for a fast random
sampling algorithm for the LS problem

We have already seen a fast random projection-based algorithm for the LS problem that runs in
o(nd2) time as well as a slow random sampling algorithm that used the exact leverage scores as
an importance sampling distribution. Not surprisingly, we can use the fast approximations to the
leverage scores to get a fast random sampling-based algorithm for the LS problem that runs in
o(nd2) time. Here is that algorithm.

Algorithm 2 A “fast” random sampling algorithm for the LS problem.

Input: An n× d matrix A, with n� d, an n-vector b, and an error parameter ε ∈ (0, 1/2).
Output: A d-vector x̃opt
1: Run the FastApproximateLeverageScores algorithm (with ε = 1/2 as input to that algorithm)

to get 2 approximations to all of the leverage scores of A; rescale them to form an importance
sampling distribution {pi}ni=1.

2: Randomly sample r & O(d log d
ε ) rows of A and elements of b, using {pi}ni=1 as the importance

sampling distribution, rescaling each by 1
rpit

, i.e., form SA and Sb.

3: Solve minx∈Rd ‖SAx− Sb‖2 with a black box to get x̃opt.
4: Return x̃opt.

For this algorithm, we can prove the following.

Theorem 2 For this algorithm, the output is a vector x̃opt such that with probability ≥ 0.8:

• ‖Ax̃opt − b‖2 ≤ (1 + ε)Z

• ‖x̃opt − xopt‖2 ≤
√
εκ(A)

√
γ−2 − 1 ‖xopt‖2

In addition, the running time is O
(
nd log(n) + d3 log(n) log(d)

)
.

6



The quality-of-approximation claims follow since using the approximate leverage scores an an im-
portance sampling distribution leads to the two structural conditions being satisfied. The running
time claims follow since the running time bottleneck for this algorithm is the running time of the
FastApproximateLeverageScores algorithm (and the running time bottleneck of that algorithm is
applying the random projection), which is O

(
nd log(n) + d3 log(n) log(d)

)
(it is this since we have

set ε = 1/2 in the input to that algorithm).

10.3 Computing leverage scores quickly for an arbitrary matrix

A question that will arise once we consider RandNLA algorithms for low-rank matrix approximation
is whether this fast leverage score approximation algorithm extends to compute the leverage scores
of general “fat” matrices, i.e., matrices where both dimensions are large and we are interested in
an approximation with respect to a low dimension defined by a low rank parameter.

The short answer is yes. The longer answer is that there are some subtleties. (There are also
subtleties in applying random projections to “fat” matrices that we will also consider. In both
cases, the subtleties have to do with the interaction between the space spanning the top part of the
spectrum of the matrix and the space spanning the bottom part of the spectrum of the matrix.)
Here, we will briefly describe some of those subtleties, without going into too much detail (if you
want more detail, see the DMMW paper).

We have seen that, when applied to a tall matrix, random projections flatten out leverage scores
to permit sparse projections or uniform sampling. It is also the case that, when applied to fat
matrices, random projections uniformize things. But, what things? And, in particular, is there
a notion of leverage, so we can view a random projection as preprocessing or preconditioning so
uniform sampling is appropriate?

Consider a general n × d matrix A, i.e., for which n ≈ d, and write A = UΣV T . In this case, U
and V are in general square, and so have both orthonormal rows and columns. Thus, the definition
of leverage we have presented before is uninteresting, since it is always uniform. On the other
hand, if we project that matrix A onto ` & k dimensions, where k is some explicit or implicit rank
parameter, then we are really interested in the non uniformity structure on the top part of the
spectrum of A.

This motivates the following definition.

Definition 1 Given a matrix A ∈ Rn×d, where n ≈ d and k � min{n, d}. Then, the leverage
scores, relative to the best rank k approximation to A are

pi =
1

k

∥∥∥(Uk)(i)

∥∥∥2

2
,

if A = UkΣkV
T
k + U⊥k Σ⊥k V

⊥
k is the decomposition of A into the best rank k approximation and the

residual.

Note that the way we have defined it,
∑n

i=1 pi = 1. We could have defined quantities `i without
the normalization, in which case we would have

∑n
i=1 `1 = ‖Uk‖2F = k, which is where the k in the

denominator of the equation in the definition comes from.

The basic idea of the approximate leverage score algorithm extends to this case, with the following
caveat: the problem of computing the leverage scores relative to the best rank k approximation to

7



A is an ill-posed problem, in that a minor change in the problem input can completely change the
answer. (On the other hand, if we used those perturbed leverage scores in a low-rank approximation
algorithm, they would still obtain good quality of approximation bounds, but they would identify
a somewhat different subspace.) To see this, consider

A = In ⇒ Uk is not unique since there are

(
n

k

)
equivalent choices

More generally, consider the matrix

A =

(
Ik o
0 (1− γ) In−k

)
,

which is parameterized by a number γ > 0. As γ → 0, it isn’t possible to distinguish the top k
directions.

There are two common solutions to this.

• Parameterize the problem in terms of the “spectral gap,” i.e., in terms of γ = σ2
k − σ2

k+1.
This is theoretically convenient, but it is awkward and typically represents an unrealistic
assumption.

• Compute the leverage for a space that is “near” the best rank k space. This is more involved,
but it uses ideas from subspace iteration methods that make the connections with random
projection (and in particular high-precision random projection) algorithms clearer.

Here is a definition of nearness that DMMW used in the latter approach.

Definition 2 Given a matrix A ∈ Rn×d, a rank parameter k � min{n, d}, let Ak be the best rank
k approximation to A. Then,

Sε = {X ∈ Rn×d : rank(X) = k and ‖A−X‖ξ ≤ (1 + ε) ‖A−Ak‖ξ}

is a set of subspaces near (in a sense quantified by ‖·‖ξ) the best rank k approximation to A.

Here ‖·‖ξ represents a unitarily-invariant norm; clearly, for different norms, one can expect different
quality-of-approximations.

Given this, we can define a weaker notion of leverage as follows.

Definition 3 Call the numbers p̂i, for all i ∈ [n] β-approximations to the normalized leverage

scores of Ak if there exists an X ∈ Sε such that p̂i ≥ β
k

∥∥∥(UX)(i)

∥∥∥2

2
and

∑n
i=1 p̂i = 1, where

UX ∈ Rn×k is the matrix of left singular vectors of X.

Given this notion, we can compute approximations to these scores in “random projection time.” We
haven’t described fat matrices and low-rank matrix approximation yet, but this time to implement
a random projection can often be made (in theory and/or in practice) to be faster than an SVD or
QR computation. In addition, random projections uniformize these quantities—and the extent to
which these are uniformized depends on details like the number of iterations in subspace iterative
methods that also determine the quality of low-rank random projection methods. We won’t go into
detail on these topics, but we will return to some of them below.

8


