
Stat260/CS294: Randomized Algorithms for Matrices and Data

Lecture 6 - 09/23/2013

Lecture 6: Sampling/Projections for Least-squares Approximation

Lecturer: Michael Mahoney Scribe: Michael Mahoney

Warning: these notes are still very rough. They provide more details on what we discussed in class,
but there may still be some errors, incomplete/imprecise statements, etc. in them.

6 Sampling/Projections for Least-squares Approximation

In the next several classes, we will be discussing RandNLA algorithms for the least-squares problem.
This is a fundamental problem in linear algebra, and many of the methods in RandNLA are most
easily introduced and understood in this relatively-simple setting. Here is the reading for today.

• Chapter 4 of: Mahoney, “Randomized Algorithms for Matrices and Data”

• Drineas, Mahoney, Muthukrishnan, and Sarlos, “Faster Least Squares Approximation”

• Sarlos, “Improved Approximation Algorithms for Large Matrices via Random Projections”

Today, we will start this by covering two topics.

• A brief overview of LS problems.

• A brief overview of sketching methods for LS problems.

6.1 Some general thoughts on LS problems

In many applications, we want to find an approximate solution to a problem or set of equations
that, for noise reasons or whatever other reasons, does not have a solution, or not unrelatedly
does not have a unique solution. A canonical example of this is given by the very overconstrained
(i.e., overdetermined) least-squares (LS) problem, and this will be our focus for the next several
classes. Some (but not all) of what we we discuss will generalize to very underconstrained (i.e.,
undetermined) LS problems, roughly-square LS problems, etc., but here we focus on the simple
setup of very overconstrained LS problems.

Let A ∈ Rn×d and b ∈ Rn be given. If n � d, i.e., there are many more rows/constraints than
columns/variables, then in general there does not exist a vector x such that Ax = b. Basically, this
is since b may have a part that sits outside the column space of A. That is, b ∈ Rn, but span(A)
is a d-dimensional subspace of Rn, and so with even a little noise, numerical instability, etc., there
will be a part of b that is not captured as a linear combination of the columns of A.

1



In this case, a popular way to find th “best” vector x such that Ax ≈ b is to minimize the norm of
the residuals, i.e., to solve minx∈Rd ||Ax− b||, where || · || is some norm. The most popular choice is
the Euclidean or `2 norm, in which case the LS problem is to minimize the sum of squares of the
residaul, i.e., to solve

Z = min
x∈Rd

‖Ax− b‖2 . (1)

If we let A+ denote the Moore-Penrose generalized inverse of A, then

xopt = A+b (2)

is the solution to the LS problem. Actually, we should note that x = A+b+ ξ, where ξ ⊥ span(A),
i.e., where ξ ∈ Rn is any vector perpendicular to the column span of A, solves the LS problem
given in Eqn. (1), and the solution given in Eqn. (2) actually is the minimal-`2-norm solution to
the LS problem. Since we will be interested in working with this shortest or minimal-norm solution,
we will call it the solution to the LS problem. For most of what we will talk about in the very
overconstrained regression problem, worrying about having any components in this perpendicular
space will not be a problem, basically since there is not a “rest of the space” to deal with. We will
see, however, when we consider the extension of these ideas to low-rank approximation that we will
need to be a little more careful in dealing with how the top part of the spectrum of a matrix and
its sketch interact with the bottom part of the spectrum of the matrix and its sketch.

This LS problem is ubiquitous and has many well-known interpretations. A statistical interpreta-
tion is that it provides the best linear unbiased estimator to the original problem. A geometric
interpretation is that the solution is simply the orthogonal projection of b onto the span(A). And
so on. Note that the latter interpretation is basically a statement about the data at hand, while
the former interpretation is basically a statement about models and unseen data. This parallels
the algorithmic-statistical approaches we mentioned earlier. Along these lines, here are two basic
questions that people are interested in when considering LS problems.

• Algorithmic question: How long does it take to solve the LS problem “exactly”? (By this,
we mean, say, to machine precision.) The answer (roughly) is that the running time in the
RAM model to solve the LS problem is O(nd2) time, and—as we will describe below—this
can be accomplished with one of a variety of direct or indirect methods.

• Statistical question: When is solving the LS problem the “right” thing to do? (By this, we
mean that it is the optimum for some underlying statistical model.) The answer (roughly) is
that it is when the data are “nice” in ways that mean that large-sample theory can be applied,
e.g., that there are a large number of small components such that measure concentrates and
that there are no small number of components that are particularly important or influential.
As we will describe below, this can be checked with empirical statistics such as the leverage
scores and with other regression diagnostics.

We will return to both of these points in detail below. In particular, in terms of running time,
we should be thinking about algorithms that run in o(nd2) time, and the role of the statistical
leverage scores which have been used in regression diagnostics in our worst case algorithms will be
particularly important.

To see how to solve the LS problem , we can define a function f(x) = ‖Ax− b‖22 = (Ax−b)T (Ax−b),
and to find the minimizer of this function, we can set the derivative equal to zero, ∂f

∂x = 0, noting

2



that the second derivative is positive (or SPD, if the matrix A has full column rank). Then we get
ATAx−AT b = 0, which is just the normal equations,

ATAx = AT b. (3)

If A has full column rank, then ATA is square and has full rank, and this is a d×d system of linear
equations with solution

xopt = (ATA)−1AT b. (4)

Of course, forming and solving the normal equations in this way is typically not recommended,
but it at least provides a form for the solution. But, in particular, note that this means that

b⊥ ≡ b−Axopt is orthogonal to span(A), i.e., b⊥
T
A = 0, or equivalently since span(U) = span(A),

where U is an orthogonal basis for span(A) computed from the SVD or a QR decomposition, we

have that b⊥
T
U = 0.

With respect to the question of how long it takes to solve LS problems, one can use so-called direct
methods or so-called iterative methods. Here is a rough outline of direct methods for solving LS
problems.

• Cholesky decomposition: If A is full rank and well-conditioned, then one can use the Cholesky
decomposition to compute an upper triangular matrix R such that ATA = RTR, and then
one can solve the normal equations RTRx = AT b.

• QR decomposition: Somewhat slower but more numerically stable, especially if A is rank-
deficient or ill-conditioned, involves computing a QR decomposition A = QR and then solving
Rx = QT b.

• SVD: Somewhat more expensive but better still if A is very ill-conditioned, involves computing
the SVD, A = UΣV T , where this is the thin or economical SVD (i.e., things that are zeroed-
out by singular values are not included), in which case xopt = V Σ−1UT b.

The complexity of all of theses methods is O(nd2). That is, although the numerical properties
differ and the constant factors differ, all three classes of algorithms asymptotically take a constant
times nd2 time. In most cases, using QR is a good tradeoff—but note that in certain large-scale
applications, the usual rules, e.g., don’t form the normal equations or don’t compute the SVD,
don’t always hold. In addition, for most of what we will do we are not interested in these details,
since we will be computing a randomized sketch and then calling a traditional algorithm as a black
box, and so we will treat all of these as similar in that sense.

Another broad class of algorithm for solving LS and other problems are iterative methods. We
will return to these later. But here we simply note that many of them boil down to conjugate
gradient ideas, and (e.g., with CGNR) they typically have a running time that is something like
O(κ(A)nnz(A) log(1/ε)) time. In particular, the running time depends on the error parameter as
O(log(1/ε)), and not poly(1/ε), time.

A third broad class of algorithms for solving LS problems use the recursive structure of well-known
Strassen-like methods for matrix multiplication—basically, those algorithms can also be applied
to rectangular LS problems, with similar improvements in worst-case running time. These are of
theoretical interest, and thus they are worth mentioning, but are never used in practice, and so we
won’t focus on them.

3



6.2 Deterministic and randomized sketches for LS Problems

At a high level, RandNLA algorithms—in general but in particular when applied to LS problems—
do one of two thing.

• Construct a sketch (with a random sampling or random projection procedure) and solve the
subproblem on that sketch with a traditional black box NLA algorithm.

• Construct a sketch (with a random sampling or random projection procedure) and use that
sketch as a preconditioner for a traditional black box NLA algorithm on the original problem.

In both cases, the randomized algorithms interface with traditional NLA algorithms (in two different
ways), and so let’s start by asking “What are properties of sketches that lead to good solutions?”

Thus, for the rest of today, we won’t specify whether our sketches are deterministic or randomized.
We will be interested in properties of some sketch and how they relate to necessary/sufficient condi-
tions to get good approximate solutions to the original LS problem. Roughly, we will show certain
conditions, and later we will show that one can construct sketches via random sampling/projection
that satisfy those conditions quickly. More generally, it is worth keeping in mind what are properties
of the sketches and linear algebra versus what are properties of the randomization.

In this course, we will deal with so-called linear sketches. Operationally, this means that we can
write the operation/action of the sketch as a linear function. Note, in particular, that random
projection matrices and random sampling matrices satisfy this. The advantages of working with
linear sketches include: we can take advantage of linear theory stuff (this may be obvious for NLA,
but it is actually useful much more generally); and it is easy to update sketches (this matters
in streaming, memory constrained environments, etc.). The disadvantages of working with linear
sketches mean that we might loose something, compared to using a broader class of sketches. Note,
however, note that a lot of work in ML, e.g., with kernels, say basically that tamely nonlinear stuff
can be done linearly. So, this is an idea that is used more generally, and in general we will work with
linear sketches. But a question worth keeping in the back of your mind is: what are metric spaces
that don’t embed well, either in general or with linear sketches, since those might have problems.

Now, onto the properties that we want a good sketch to have to help solve linear regression. Let’s
let X be an arbitrary sketching matrix, i.e., any matrix. By this, we mean an arbitrary matrix
(randomized or not, tractable to compute or not, etc.) that we are going to apply to A and b to
construct a sketch. For example, X could be a sampling matrix like we saw before with matrix
multiplication sampling algorithms, X could be a dense projection matrix like we saw before, or X
could be STHD, THD, or other structured random projections. When forming a sketch, we will
be replacing the original LS problem

Z = min
x∈Rd

‖Ax− b‖2 ,

the solution of which is xopt = A+b, with a sketched LS problem

Z̃ = min
x∈Rd

‖X(Ax− b)‖2 ,

the solution of which is x̃opt = (XA)+Xb. And we want to ask what are properties that X needs
to satisfy s.t.

xopt ≈ x̃opt

‖Ax̃opt‖2 ≈ ‖Axopt − b‖2 .

4



Several comments are in order.

• The second requirement is a statement and is more common in TCS where one might not
even be able to obtain a “certificate” for the solution. The first requirement is usually harder
to get in worst-case approximation algorithm theory but usually comes for free in matrix
problems with `2 objectives.

• Moreover, the bound on the vector achieving the optimal solution is typically of greater inter-
est in NLA and ML/data applications, where the vector is used form something downstream
such as classification.

• For matrix extensions of these ideas, we typically want results for the objective, since we will
measure quality by norm reconstruction, rather than capturing an actual set of vectors or an
actual subspace.

• For `1 and other objectives, the connections between objectives and certificates and what one
can compute from the other are more tenuous.

With this in place, here are two important structural conditions. Let A = UΣV T = UAΣAV
T
A

be the SVD of A, and let b⊥ = UAU
T
Aa be the part of b sitting outside span(A), and note that

Z = ‖Axopt − b‖2 =
∥∥b⊥∥∥

2
. Then, here are two conditions.

• Condition I:
σmin(XUA) ≥ 1/

√
2. (5)

• Condition II: ∥∥∥UAX
TXb⊥

∥∥∥2
2
≤ ε

2
Z2. (6)

Before proceeding, let’s consider these conditions; here are several comments.

• We have defined this in terms of UA from the SVD, but we get exactly the same structural
conditions for any matrix Q, e.g., from the QR decomposition. Although this issue doesn’t
matter here so much, it will matter more when we consider the extension of these ideas to
low-rank matrix approximation problems.

• Although Condition I is that σmin(XUA) ≥ 1/
√

2, i.e., we only need a lower bound on
the singular values of σ(XUA), all of our constructions will be such that ‖1 − σi(XUA)‖ ≤
1− 2−1/2. Thus, one should think if XUA as an approximate isometry (or, more imprecisely,
an approximate rotation). We want that X, viewed as a function f : Rn → Rr, with r ≈ d,
is roughly a rotation/isometry. In particular, although we zero-out most of the coordinates,
the mapping to the remaining are an acute perturbation with respect to the original data.

• Condition II states that Xb⊥ = XU⊥AU
⊥
A

T
b is still roughly orthogonal to XUA. It is not

surprising that we need a condition on the right hand side vector b, but it is surprising that
we can satisfy this (with random sampling and random projection algorithms) without looking
at the right hand side at all, i.e., either data-agnostic random projections or random sampling
methods that only depend on information in A. Of course, in certain practical cases, one can
sometimes do better by looking at the right hand side, and extensions to `1 regression, etc.,
typically need to look at the right hand side, although sometimes implicitly by defining an
augmented matrix

[
A −b

]
and working on that.

5



Here are a few extreme cases to consider.

• Let X = In, viewed as a function Rn → Rn. Then, σmin(XUA) = σmax(XUA) = 1 (since
XUA = UA), and UT

AX
TXb⊥ = 0. In this case, constructing X is “easy,” and solving the

“subproblem” is the same as the original problem and so it “hard.”

• Let X = UT
A , viewed as a function Rn → Rd. Then, σmin(XUA) = σmax(XUA) = 1 (since

XUA = Id), and UT
AX

TXb⊥ = 0. In this case, constructing X is “hard,” since it involves
computing UT

A which almost amounts to solving the original problem, but solving the sub-
problem is easy, I think. (Similar statements could be made if X was the “Q” matrix from a
QR decomposition.)

So, the goal for what we will be doing will be to construct a sketch that is relatively-easy to
construct and such that solving the subproblem is also relatively easy, in the sense that both take
o(nd2) time.

Given all of that, here are our main lemmas for those structural conditions. Basically, these lemmas
says that if we have a sketching matrix X that satisfies those two conditions, then we have a relative-
error approximation to the solution to the LS problem, on both the objective and the certificate. We
will do the first (a lemma about being close with respect to the objective function value) now, and
we will do the next two (lemmas about being close with respect to the certificate or solution vector)
next time. Note that, for these lemmas, we are interested in quality-of-approximation guarantees
for a given sketching matrix X, i.e., we don’t worry about the time it takes to construct X. We
will get to running time considerations soon enough.

Lemma 1 Consider the overconstrained least squares approximation problem and let the matrix
UA ∈ Rn×d contain the top d left singular vectors of A. Assume that the matrix X satisfies
conditions (5) and (6) above, i.e., Condition I and Condition II, for some ε ∈ (0, 1). Then, the
solution vector x̃opt to the least squares approximation problem satisfies:

‖Ax̃opt − b‖2 ≤ (1 + ε)Z. (7)

Before proceeding with the proof of this lemma, here are a few comments.

• This lemma is a deterministic statement, i.e., there is no randomness, and it holds for any
matrix X that satisfies those two conditions. Failure probabilities in randomized matrix
algorithms will enter into the construction of X and whether X satisfies those two conditions.

• We will be mostly interested in worst-case a priori bounds, and we will show that X satisfies
these two conditions for worst-case input; but one could easily ask for a posteriori bounds,
by, e.g., sampling/projecting less aggressively and checking if these conditions are satisfied.
We won’t do this for the LS regression problem, but we will consider this approach for low-
rank matrix approximation problems, and this is probably the way to implement randomized
matrix algorithms more generally.

6



Proof: Let us first rewrite the down-scaled regression problem induced by X as

min
x∈Rd

‖Xb−XAx‖22 = min
y∈Rd

∥∥∥X(Axopt + b⊥)−XA(xopt + y)
∥∥∥2
2

(8)

= min
y∈Rd

∥∥∥Xb⊥ −XAy∥∥∥2
2

= min
z∈Rd

∥∥∥Xb⊥ −XUAz
∥∥∥2
2
. (9)

(8) follows since b = Axopt + b⊥ and (9) follows since the columns of the matrix A span the same
subspace as the columns of UA. Now, let zopt ∈ Rd be such that UAzopt = A(xopt − x̃opt), and note
that zopt minimizes eqn. (9). The latter fact follows since∥∥∥Xb⊥ −XA(xopt − x̃opt)

∥∥∥2
2

=
∥∥∥Xb⊥ −X(b− b⊥) +XAx̃opt

∥∥∥2
2

= ‖XAx̃opt −Xb‖22 .

XXX. THERE IS A SIGN ISSUE THERE TO FIX. Thus, by the normal equations (3), we have
that

(XUA)TXUAzopt = (XUA)TXb⊥.

Taking the norm of both sides and observing that under condition (5) we have σi((XUA)TXUA) =
σ2i (XUA) ≥ 1/

√
2, for all i, it follows that

‖zopt‖22 /2 ≤
∥∥(XUA)TXUAzopt

∥∥2
2

=
∥∥∥(XUA)TXb⊥

∥∥∥2
2
. (10)

Using condition (6) we observe that
‖zopt‖22 ≤ εZ

2. (11)

Let us rewrite the norm of the residual vector as

‖b−Ax̃opt‖22 = ‖b−Axopt +Axopt −Ax̃opt‖22
= ‖b−Axopt‖22 + ‖Axopt −Ax̃opt‖22 (12)

= Z2 + ‖UAzopt‖22 (13)

≤ Z2 + εZ2, (14)

where (12) follows by Pythagoras, since b−Axopt = b⊥, which is orthogonal to A, and consequently
to A(xopt − x̃opt); (13) follows by the definition of zopt and Z; and (14) follows by (11) and the
orthogonality of UA. The first claim of the lemma follows since

√
1 + ε ≤ 1 + ε.

�

Next time, we will start by proving that the vector achieving the optimum in the subsampled
problem is a very good approximation to the vector achieving the optimum in the original problem.

7


