
C H A P T E R 4 1

Uniform laws of large numbers 2

The focus of this chapter is a class of results known as uniform laws of large numbers. 3

As suggested by their name, these results represent a strengthening of the usual law of 4

large numbers, which applies to a fixed sequence of random variables, to related laws 5

that hold uniformly over collections of random variables. On one hand, such uniform 6

laws are of theoretical interest in their own right, and represent an entrypoint to a rich 7

area of probability and statistics known as empirical process theory. On the other hand, 8

uniform laws also play a key role in more applied settings, including understanding the 9

behavior of different types of statistical estimators. The classical versions of uniform 10

laws are of an asymptotic nature, whereas more recent work in the area has emphasized 11

non-asymptotic results. Consistent with the overall goals of this book, this chapter will 12

follow the non-asymptotic route, presenting results that apply to all sample sizes. In 13

order to do so, we make use of the tail bounds and the notion of Rademacher complexity 14

previously introduced in Chapter 2. 15

� 4.1 Motivation 16

We begin with some statistical motivations for deriving laws of large numbers, first for 17

the case of cumulative distribution functions (CDFs) and then for more general function 18

classes. 19

� 4.1.1 Uniform convergence of CDFs 20

The law of any scalar random variable X can be fully specified by its cumulative dis-

tribution function, whose value at any point t ∈ R is given by F (t) : = P[X ≤ t]. Now

suppose that we are given a collection xn1 = {x1, x2, . . . , xn} of n i.i.d. samples, each

drawn according to the law specified by F . A natural estimate of F is the empirical

CDF given by

F̂n(t) : =
1

n

n∑

i=1

I(−∞,t][Xi], (4.1)
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96 CHAPTER 4. UNIFORM LAWS OF LARGE NUMBERS

where I(−∞,t][x] is a {0, 1}-valued indicator function for the event {x ≤ t}. Since the1

population CDF can be written as F (t) = E[I(−∞,t][X]], the empirical CDF is unbiased2

in a pointwise sense.3

Figure 4-1 provides some illustrations of empirical CDFs for the uniform distribution4

on the interval [0, 1] for different sample sizes. Note that F̂n is a random function, with5

the value F̂n(t) corresponding to the fraction of samples that lie in the interval (−∞, t].6

Consequently, for any fixed t ∈ R, the law of large numbers implies that F̂n(t)
prob.−→ F (t).7
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Figure 4-1. Plots of population and empirical CDF functions for the uniform distribution on [0, 1].
(a) Empirical CDF based on n = 10 samples. (b) Empirical CDF based on n = 100 samples.

8

In statistical settings, a typical use of the empirical CDF is to construct estimators of9

various quantities associated with the population CDF. Many such estimation problems10

can be formulated in a terms of functional γ that maps any CDF F to a real number11

γ(F )—that is, F 7→ γ(F ). Given a set of samples distributed according to F , the plug-12

in principle suggests replacing the unknown F with the empirical CDF F̂n, thereby13

obtaining γ(F̂n) as an estimate of γ(F ). Let us illustrate this procedure via some14

examples.15

Example 4.1 (Expectation functionals). Given some integrable function g, we may

define the expectation functional γg via

γg(F ) : =

∫
g(x)dF (x). (4.2)

For instance, for the function g(x) = x, the functional γg maps F to E[X], where16

X is a random variable with CDF F . For any g, the plug-in estimate is given by17

γg(F̂n) =
1
n

∑n
i=1 g(Xi), corresponding to the sample mean of g(X). In the special case18
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SECTION 4.1. MOTIVATION 97

g(x) = x, we recover the usual sample mean 1
n

∑n
i=1Xi as an estimate for the mean 1

µ = E[X]. A similar interpretation applies to other choices of the underlying function 2

g. ♣ 3

Example 4.2 (Quantile functionals). For any α ∈ [0, 1], the quantile functional Qα is

given by

Qα(F ) : = inf{t ∈ R | F (t) ≥ α}. (4.3)

The median corresponds to the special case α = 0.5. The plug-in estimate is given by

Qα(F̂n) : = inf
{
t ∈ R | 1

n

n∑

i=1

I[t,∞)[Xi] ≥ α
}
, (4.4)

and corresponds to estimating the αth quantile of the distribution by the αth sample 4

quantile. In the special case α = 0.5, this estimate corresponds to the sample median. 5

Again, it is of interest to determine in what sense (if any) the random variable Qα(F̂n) 6

approaches Qα(F ) as n becomes large. In this case, Qα(F̂n) is a fairly complicated, non- 7

linear function of all the variables, so that this convergence does not follow immediately 8

by a classical result such as the law of large numbers. 9

♣ 10

Example 4.3 (Goodness-of-fit functionals). It is frequently of interest to test the hy- 11

pothesis of whether or not a given set of data has been drawn from a known dis- 12

tribution F0. For instance, we might be interested in assessing departures from uni- 13

formity, in which case F0 would be a uniform distribution on some interval, or de- 14

partures from Gaussianity, in which F0 would specify a Gaussian with a fixed mean 15

and variance. Such tests can be performed using functionals that measure the dis- 16

tance between F and the target CDF F0, including the sup-norm distance ‖F − F0‖∞, 17

or other distances such as the Cramér-von-Mises criterion based on the functional 18

γ(F ) : =
∫∞
−∞[F (x)− F0(x)]

2dF0(x). ♣ 19

For any plug-in estimator γ(F̂n), an important question is to understand when it is

consistent—i.e., when does γ(F̂n) converges to γ(F ) in probability (or almost surely)?

This question can be addressed in a unified manner for many functionals by defining

a notion of continuity. Given a pair of CDFs F and G, let us measure the distance

between them using the sup-norm

‖G− F‖∞ : = sup
t∈R

|G(t)− F (t)|. (4.5)

We can then define the continuity of a functional γ with respect to this norm: more 20

precisely, we say that the functional γ is continuous at F in the sup-norm if for all 21

ǫ > 0, there exists a δ > 0 such that ‖G− F‖∞ ≤ δ implies that |γ(G)− γ(F )| ≤ ǫ. 22
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98 CHAPTER 4. UNIFORM LAWS OF LARGE NUMBERS

As we explore in Exercise 4.1, this notion is useful, because for any continuous1

functional, it reduces the consistency question for the plug-in estimator γ(F̂n) to the2

issue of whether or not ‖F̂n − F‖∞ converges to zero. A classical result, known as the3

Glivenko-Cantelli theorem, addresses the latter question:4

5

Theorem 4.1 (Glivenko-Cantelli). For any distribution, the empirical CDF F̂n is a

strongly consistent estimator of the population CDF F in the uniform norm, meaning

that

‖F̂n − F‖∞ a.s.−→ 0. (4.6)

6

7

We provide a proof of this claim as a corollary of a more general result to follow (see8

Theorem 4.2). For statistical applications, an important consequence of Theorem 4.19

is that the plug-in estimate γ(F̂n) is almost surely consistent as an estimator of γ(F )10

for any functional γ that is continuous with respect to the sup-norm. See Exercise 4.111

for further exploration of these issues.12

� 4.1.2 Uniform laws for more general function classes13

We now turn to more general consideration of uniform laws of large numbers. Let F be

a class of integrable real-valued functions with domain X , and let Xn
1 = {X1, . . . , Xn}

be a collection of i.i.d. samples from some distribution P over X . Consider the random

variable

‖Pn − P‖F : = sup
f∈F

∣∣ 1
n

n∑

i=1

f(Xi)− E[f ]
∣∣, (4.7)

which measures the absolute deviation between the sample average 1
n

∑n
i=1 f(Xi) and14

the population average E[f ] = E[f(X)], uniformly over the class F . (See the bibli-15

ographic section for a discussion of possible measurability concerns with this random16

variable.)17

18

Definition 4.1. We say that F is a Glivenko-Cantelli class for P if ‖Pn − P‖F

converges to zero in probability as n→ ∞.19

20

21

This notion can also be defined in a stronger sense, requiring almost sure convergence22

of ‖Pn−P‖F , in which case we say that F satisfies a strong Glivenko-Cantelli law. The23

classical result on the empirical CDF (Theorem 4.1) can be reformulated as a particular24

case of this notion:25
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SECTION 4.1. MOTIVATION 99

Example 4.4 (Empirical CDFs and indicator functions). Consider the function class

F =
{
I(−∞,t](·) | t ∈ R

}
, (4.8)

where I(−∞,t] is the {0, 1}-valued indicator function of the interval (−∞, t]. For each 1

fixed t ∈ R, we have E[I(−∞,t](X)] = P[X ≤ t] = F (t), so that the classical Glivenko- 2

Cantelli theorem corresponds to a strong uniform law for the class (4.8). ♣ 3

Not all classes of functions are Glivenko-Cantelli, as illustrated by the following example. 4

Example 4.5 (Failure of uniform law). Let S be the class of all subsets S of [0, 1]

such that the subset S has a finite number of elements, and consider the function

class FS = {IS(·) | S ∈ S} of ({0-1}-valued) indicator functions of such sets. Suppose

that samples Xi are drawn from some distribution over [0, 1] that has no atoms (i.e.,

P({x}) = 0 for all x ∈ [0, 1]); this class includes any distribution that has a density

with respect to Lebesgue measure. For any such distribution, we are guaranteed that

P[S] = 0 for all S ∈ S. On the other hand, for any positive integer n ∈ N, the

set Xn
1 = {X1, . . . , Xn} belongs to S, and moreover by definition of the empirical

distribution, we have Pn[X
n
1 ] = 1. Putting together the pieces, we conclude that

sup
S∈S

|Pn[S]− P[S]| = 1− 0 = 1, (4.9)

so that the function class FS is not a Glivenko-Cantelli class for P. ♣ 5

We have seen that the classical Glivenko-Cantelli law—which guarantees conver- 6

gence of a special case of the variable ‖Pn−P‖F—is of interest in analyzing estimators 7

based on “plugging in” the empirical CDF. It is natural to ask in what other statis- 8

tical contexts do these quantities arise? In fact, variables of the form ‖Pn − P‖F are 9

ubiquitous throughout statistics—in particular, they lie at the heart of methods based 10

on empirical risk minimization. In order to describe this notion more concretely, let 11

us consider an indexed-family of probability distributions {Pθ | θ ∈ Ω}, and suppose 12

that we are given n samples Xn
1 = {X1, . . . , Xn}, each sample lying in some space X . 13

Suppose that the samples are drawn i.i.d. according to a distribution Pθ∗ , for some fixed 14

but unknown θ∗ ∈ Ω. Here the index θ∗ could lie within a finite-dimensional space, 15

such as Ω = Rd in a vector estimation problem, or could lie within some function class 16

Ω = G , in which case the problem is of the non-parametric variety. 17

In either case, a standard decision-theoretic approach to estimating θ∗ is based

on minimizing a loss function of the form Lθ(x), which measures the “fit” between a

parameter θ ∈ Ω and the sample X ∈ X . Given the collection of n samples Xn
1 , the
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100 CHAPTER 4. UNIFORM LAWS OF LARGE NUMBERS

principle of empirical risk minimization is based on the objective function

R̂n(θ, θ
∗) : =

1

n

n∑

i=1

Lθ(Xi).

This quantity is known as the empirical risk, since it is defined by the samples Xn
1 , and

our notation reflects the fact that these samples depend—in turn—on the unknown

distribution Pθ∗ . This empirical risk should be contrasted with the population risk

R(θ, θ∗) : = Eθ∗
[
Lθ(X)

]
,

where the expectation Eθ∗ is taken over a sample X ∼ Pθ∗ .1

In practice, one minimizes the empirical risk over some subset Ω0 of the full space

Ω, thereby obtaining some estimate θ̂. The statistical question is how to bound the

excess risk, measured in terms of the population quantities—namely the difference

δR(θ̂, θ∗) : = R(θ̂, θ∗)− inf
θ∈Ω0

R(θ, θ∗).

Let us consider some examples to illustrate.2

Example 4.6 (Maximum likelihood). Consider a family of distributions {Pθ, θ ∈ Ω},
each with a strictly positive density pθ (defined with respect to a common underlying

measure). Now suppose that we are given n i.i.d. samples from unknown distribution

Pθ∗ , and we would like to estimate the unknown parameter θ∗. In order to do so, we

consider the cost function

Lθ(x) : = log
pθ∗(x)

pθ(x)
.

(The term pθ∗(x), which we have included for later theoretical convenience, has no effect

on the minimization over θ.) Indeed, the maximum likelihood estimate is obtained by

minimizing the empirical risk

θ̂ ∈ arg min
θ∈Ω0

1

n

n∑

i=1

log
pθ∗(Xi)

pθ(Xi)
︸ ︷︷ ︸

R̂n(θ,θ∗)

= arg min
θ∈Ω0

1

n

n∑

i=1

log
1

pθ(Xi)

The population risk is given by R(θ, θ∗) = Eθ∗
[
log pθ∗ (X)

pθ(X)

]
, a quantity known as the3

Kullback-Leibler divergence between pθ∗ and pθ. In the special case that θ∗ ∈ Ω0, the4

excess risk is simply the Kullback-Leibler divergence between the true density pθ∗ and5

the fitted model p
θ̂
. ♣6
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SECTION 4.1. MOTIVATION 101

Example 4.7 (Binary classification). Suppose that we observe n samples of the form 1

(Xi, Yi) ∈ {−1,+1} × Rd, where the vector Xi corresponds to a set of d predictors or 2

features, and the binary variable Yi corresponds to a label. We can view such data as 3

being generated by some distribution PX over the features, and a conditional distribu- 4

tion PY |Z . Since Y takes binary values, the conditional distribution is fully specified by 5

the likelihood ratio ψ(x) = P[Y=+1 |X=x]
P[Y=−1 |X=x] . 6

The goal of binary classification is to estimate a function f : Rd → {−1,+1} that

minimizes the probablity of mis-classification P[f(X) 6= Y ], for an independently drawn

pair (X,Y ). Note that this probability of error corresponds to the population risk for

the cost function

Lf (X,Y ) : =

{
1 if f(X) 6= Y

0 otherwise.
(4.10)

A function that minimizes this probability of error is known as a Bayes classifier f∗; in

the special case of equally probable classes (P[Y = +1] = P[Y = −1] = 1/2), a Bayes

classifier is given by f∗(x) = +1 if φ(x) ≥ 1, and f∗(x) = −1 otherwise. Since the

likelihood ratio φ (and hence f∗) is unknown, a natural approach to approximating the

Bayes rule is based on choosing f̂ to minimize the empirical risk

R̂n(f, f
∗) : =

1

n

n∑

i=1

I
[
f(Xi) 6= Yi

]
︸ ︷︷ ︸

Lf (Xi,Yi)

,

corresponding to the fraction of training samples that are mis-classified. Typically, 7

the minimization over f is restricted to some subset of all possible decision rules. See 8

Chapter 14 for some further discussion of how to analyze such methods for binary 9

classification. ♣ 10

Returning to the main thread, our goal is to develop methods for controlling the

excess risk. For simplicity, let us assume1 that there exists some θ0 ∈ Ω0 such that

R(θ0, θ
∗) = infθ∈Ω0 R(θ, θ

∗). With this notation, the excess risk can be decomposed as

δR(θ̂, θ∗) =
{
R(θ̂, θ∗)− R̂n(θ̂, θ

∗)
}

︸ ︷︷ ︸
T1

+
{
R̂n(θ̂, θ

∗)− R̂n(θ0, θ
∗)
}

︸ ︷︷ ︸
T2≤0

+
{
R̂n(θ0, θ

∗)−R(θ0, θ
∗)
}

︸ ︷︷ ︸
T3

.

Note that the middle term is non-positive, since θ̂ minimizes the empirical risk over Ω0. 11

The third term can be dealt with in a relatively straightforward manner, because

θ0 is an unknown but non-random quantity. Indeed, recalling the definition of the

1If the infimum is not achieved, then we choose an element θ0 for which this equality holds up to
some arbitrarily small tolerance ǫ > 0, and the analysis to follow holds up to this tolerance.
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102 CHAPTER 4. UNIFORM LAWS OF LARGE NUMBERS

empirical risk, we have

T3 =
1

n

n∑

i=1

Lθ0(Xi)− E[Lθ0(X)],

corresponding to the deviation of a sample mean from its expectation for the random

variable Lθ0(X). This quantity can be controlled using the techniques introduced in

Chapter 2—for instance, via the Hoeffding bound when the samples are independent

and the loss function is bounded. The first term can be written in a similar way, namely

as the sum

T1 =
1

n

n∑

i=1

Lθ̂(Xi)− E[Lθ̂(X)].

This quantity is more challenging to control, because the parameter θ̂—in sharp contrast

to the deterministic quantity θ0—is now random. In general, it depends on all the

samples Xn
1 , since it was obtained by minimizing the empirical risk. For this reason,

controlling the first term requires a stronger result, such as a uniform law of large

numbers over the loss class L(Ω0) : = {Lθ, θ ∈ Ω0}. With this notation, we have

T1 ≤ sup
θ∈Ω0

∣∣ 1
n

n∑

i=1

Lθ(Xi)− E[Lθ(X)]
∣∣ = ‖Pn − P‖L(Ω0)

Since T3 is also dominated by this same quantity, we conclude that the excess risk is1

at most 2‖Pn − P‖L(Ω0). This derivation demonstrates that the central challenge in2

analyzing estimators based on empirical risk minimization is to establish a uniform law3

of large numbers for the loss class L(Ω0). We explore various concrete examples of this4

procedure in the exercises.5

� 4.2 A uniform law via Rademacher complexity6

Having developed various motivations for studying uniform laws, let us now turn to

the technical details of deriving such results. An important quantity that underlies the

study of uniform laws is the Rademacher complexity of the function class F . For any

fixed collection xn1 : = (x1, . . . , xn) of points, consider the subset of Rn given by

F (xn1 ) : =
{(
f(x1), . . . , f(xn)

)
| f ∈ F

}
. (4.11)

The set F (xn1 ) corresponds to all those vectors in Rn that can be realized by applying a

function f ∈ F to the collection (x1, . . . , xn), and the empirical Rademacher complexity
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SECTION 4.2. A UNIFORM LAW VIA RADEMACHER COMPLEXITY 103

is given by

R(F (xn1 )/n) : = Eε

[
sup
f∈F

∣∣ 1
n

n∑

i=1

εif(xi)
∣∣] (4.12)

Note that this definition coincides with our earlier definition of the Rademacher com- 1

plexity of a set (see Example 2.11). 2

Given a collection Xn
1 : = (X1, . . . , Xn) of random samples, then the empirical

Rademacher complexity R(F (Xn
1 )/n) is a random variable. Taking its expectation

yields the Rademacher complexity of the function class F—namely, the deterministic

quantity

Rn(F ) : = EX

[
R(F (Xn

1 )/n)
]
= EX,ε

[
sup
f∈F

∣∣ 1
n

n∑

i=1

εif(Xi)
∣∣
]
. (4.13)

Note that the Rademacher complexity is the average of the maximum correlation 3

between the vector (f(X1), . . . , f(Xn)) and the “noise vector” (ε1, . . . , εn), where the 4

maximum is taken over all functions f ∈ F . The intuition is a natural one: a func- 5

tion class is extremely large—and in fact, “too large” for statistical purposes—if we 6

can always find a function that has a high correlation with a randomly drawn noise 7

vector. Conversely, when the Rademacher complexity decays as a function of sample 8

size, then it is impossible to find a function that correlates very highly in expectation 9

with a randomly drawn noise vector. 10

11

We now make precise the connection between Rademacher complexity and the 12

Glivenko-Cantelli property, in particular by showing that any bounded function class 13

F with Rn(F ) = o(1) is also a Glivenko-Cantelli class. More precisely, we prove a 14

non-asymptotic statement, in terms of a tail bound for the probability that the random 15

variable ‖Pn − P‖F deviates substantially above a multiple of the Rademacher com- 16

plexity. 17

18

Theorem 4.2. Let F be a class of functions f : X → R that is uniformly bounded

(i.e., ‖f‖∞ ≤ b for all f ∈ F ). Then for all n ≥ 1 and δ ≥ 0, we have

‖Pn − P‖F ≤ 2Rn(F ) + δ (4.14)

with P-probability at least 1− 2 exp(−nδ2

8b2

)
. Consequently, as long as Rn(F ) = o(1),

we have ‖Pn − P‖F

a.s.−→ 0.

19

20

21

In order for Theorem 4.2 to be useful, we need to obtain upper bounds on the 22
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104 CHAPTER 4. UNIFORM LAWS OF LARGE NUMBERS

Rademacher complexity. There are a variety of methods for doing so, ranging from1

direct calculations to alternative complexity measures. In Section 4.3, we develop some2

techniques for upper bounding the Rademacher complexity for indicator functions of3

half-intervals, as required for the classical Glivenko-Cantelli theorem (see Example 4.4);4

we also discuss the notion of Vapnik-Chervonenkis dimension, which can be used to up-5

per bound the Rademacher complexity for other function classes. In Chapter 5, we6

introduce more advanced techniques based on metric entropy and chaining for control-7

ling Rademacher complexity and related sub-Gaussian processes. In the meantime, let8

us turn to the proof of Theorem 4.2.9

Proof. We first note if Rn(F ) = o(1), then the almost-sure convergence follows from10

the tail bound (4.14) and the Borel-Cantelli lemma. Accordingly, the remainder of the11

argument is devoted to proving the tail bound (4.14).12

Concentration around mean: We first claim that when F is uniformly bounded, then the

random variable ‖Pn−P‖F is sharply concentrated around its mean. In order to simplify

notation, it is convenient to define the re-centered functions f(x) : = f(x)− E[f(X)],

and to write ‖Pn − P‖F = supf∈F

∣∣ 1
n

∑n
i=1 f(Xi)

∣∣. Thinking of the samples as fixed

for the moment, consider the function G(x1, . . . , xn) : = supf∈F

∣∣ 1
n

∑n
i=1 f(xi)

∣∣. We

claim that G satisfies the Lipschitz property required to apply the bounded differences

method (recall Corollary 2.2). Since the function G is invariant to permutation of its co-

ordinates, it suffices to bound the difference when the first co-ordinate x1 is perturbed.

Accordingly, we define the vector y ∈ Rn with yi = xi for all i 6= 1, and seek the bound

the difference |G(x)−G(y)|. For any function f = f − E[f ], we have

∣∣ 1
n

n∑

i=1

f(xi)
∣∣− sup

h∈F

∣∣ 1
n

n∑

i=1

h(yi)
∣∣ ≤

∣∣ 1
n

n∑

i=1

f(xi)
∣∣−

∣∣ 1
n

n∑

i=1

f(yi)
∣∣

≤ 1

n

∣∣f(x1)− f(y1)
∣∣

≤ 2b

n
, (4.15)

where the final inequality uses the fact that

∣∣f(x1)− f(y1)
∣∣ =

∣∣f(x1)− f(y1)
∣∣ ≤ 2b,

which follows from the uniform boundedness condition ‖f‖∞ ≤ b. Since the inequal-

ity (4.15) holds for any function f , we may take the supremum over f ∈ F on both

sides; doing so yields the inequality G(x) − G(y) ≤ 2b
n . Since the same argument may

be applied with the roles of x and y reversed, we conclude that |G(x) − G(y)| ≤ 2b
n .
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SECTION 4.2. A UNIFORM LAW VIA RADEMACHER COMPLEXITY 105

Therefore, by the bounded differences method (see Corollary 2.2), we have

∣∣‖Pn − P‖F − E[‖Pn − P‖F ]
∣∣ ≤ t with P-prob. at least 1− 2 exp(−nt2

8b2

)
, (4.16)

valid for all t ≥ 0. 1

Upper bound on mean: It remains to show that E[‖Pn − P‖F ] is upper bounded by

at most 2Rn(F ), and we do so using a classical symmetrization argument. Letting

(Y1, . . . , Yn) be a second i.i.d. sequence, independent of (X1, . . . , Xn), we have

E[‖Pn − P‖F ] = EX

[
sup
f∈F

∣∣ 1
n

n∑

i=1

{
f(Xi)− EYi

[f(Yi)]
}∣∣
]

= EX

[
sup
f∈F

∣∣∣EY [
1

n

n∑

i=1

{
f(Xi)− f(Yi)

}
]
∣∣∣
]

≤ EX,Y

[
sup
f∈F

∣∣ 1
n

n∑

i=1

{
f(Xi)− f(Yi)

}∣∣
]
,

where the inequality follows from Jensen’s inequality for convex functions. Now let

(ε1, . . . , εn) be an i.i.d. sequence of Rademacher variables, independent of X and Y .

For any function f ∈ F and any i = 1, 2, . . . , n, the variable εi(f(Xi)− f(Yi)) has the

same distribution as f(Xi)− f(Yi), whence

E[‖Pn − P‖F ] ≤ EX,Y,ε

[
sup
f∈F

∣∣ 1
n

n∑

i=1

εi
(
f(Xi)− f(Yi)

)∣∣
]

≤ 2EX,ε

[
sup
f∈F

∣∣ 1
n

n∑

i=1

εif(Xi)
∣∣
]

= 2Rn(F ). (4.17)

Combining the upper bound (4.17) with the tail bound (4.16) yields the claim. 2

� 4.2.1 Necessary conditions with Rademacher complexity 3

The proof of Theorem 4.2 illustrates an important technique known as symmetrization,

which relates the random variable ‖Pn − P‖F to its symmetrized version

‖Rn‖F : = sup
f∈F

| 1
n

n∑

i=1

εif(Xi)| (4.18)

Note that the expectation of ‖Rn‖F corresponds to the Rademacher complexity, which 4

plays a central role in Theorem 4.2. It is natural to wonder whether much was lost in 5

moving from the variable ‖Pn − P‖F to its symmetrized version. The following “sand- 6

wich” result relates these quantities. 7
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1

Proposition 4.1. For any convex non-decreasing function Φ : R → R, we have

EX,ε

[
Φ
(1
2
‖Rn‖F̄

)] (a)

≤ EX

[
Φ(‖Pn − P‖F )

] (b)

≤ EX,ε

[
Φ(2‖Rn‖F )

]
, (4.19)

where F = {f − E[f ], f ∈ F} is the re-centered function class.

2

3

When applied with the convex non-decreasing function Φ(t) = t, Proposition 4.1 yields

the inequalities

1

2
EX,ε‖Rn‖F̄ ≤ EX [‖Pn − P‖F ] ≤ 2EX,ε‖Rn‖F , (4.20)

with the only difference being the use of F in the upper bound, and the re-centered4

class F in the lower bound.5

Other choices of interest include Φ(t) = eλt for some λ > 0, which can be used to6

control the moment generating function.7

Proof. The proof of inequality (b) is essentially identical to the argument for Φ(t) = t

provided in the proof of Theorem 4.2. Turning to the bound (a), we have

EX,ε

[
Φ
(1
2
‖Rn‖F̄

)]
= EX,ε

[
Φ
(1
2
sup
f∈F

| 1
n

n∑

i=1

εi{f(Xi)− EYi
[f(Yi)]}|

)]

(i)

≤ EX,Y,ε

[
Φ
(1
2
sup
f∈F

| 1
n

n∑

i=1

εi{f(Xi)− f(Yi)}|
)]

(ii)
= EX,Y

[
Φ
(1
2
sup
f∈F

| 1
n

n∑

i=1

{f(Xi)− f(Yi)}|
)]

where inequality (i) follows from Jensen’s inequality and the convexity of Φ; and equality

(ii) follows since for each each i = 1, 2 . . . , n and f ∈ F , the variables εi{f(Xi)− f(Yi)}
and f(Xi)−f(Yi) have the same distribution. Adding and subtracting E[f ] and applying

triangle inequality, we obtain that T : = 1
2 supf∈F | 1n

∑n
i=1{f(Xi) − f(Yi)}| is upper

bounded as

T ≤ 1

2
sup
f∈F

| 1
n

n∑

i=1

{f(Xi)− E[f ]}|+ 1

2
sup
f∈F

| 1
n

n∑

i=1

{f(Yi)− E[f ]}|

Since Φ is convex and non-decreasing, we obtain

Φ(T ) ≤ 1

2
Φ
(
sup
f∈F

| 1
n

n∑

i=1

{f(Xi)− E[f ]}|
)
+

1

2
Φ
(
sup
f∈F

| 1
n

n∑

i=1

{f(Yi)− E[f ]}|
)
.
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Since X and Y are identically distributed, taking expectations yields the claim. 1

A consequence of Proposition 4.1 is that the random variable ‖Pn − P‖F can be 2

lower bounded by a multiple of Rademacher complexity, and some fluctuation terms. 3

This fact can be used to prove the following: 4

5

Proposition 4.2. Let F be a class of functions f : X → R that is uniformly bounded

(i.e., ‖f‖∞ ≤ b for all f ∈ F ). Then for all δ ≥ 0, we have

‖Pn − P‖F ≥ 1

2
Rn(F )−

supf∈F |E[f ]|
2
√
n

− δ (4.21)

with P-probability at least 1− 2e−
nδ2

8b2 .

6

7

We leave the proof of this result for the reader (see Exercise 4.3). As a conse- 8

quence, if the Rademacher complexity Rn(F ) remains bounded away from zero, then 9

‖Pn − P‖F cannot converge to zero in probability. We have thus shown that for a 10

uniformly bounded function class F , the Rademacher complexity provides a necessary 11

and sufficient condition for it to be Glivenko-Cantelli. 12

� 4.3 Upper bounds on the Rademacher complexity 13

Obtaining concrete results using Theorem 4.2 requires methods for upper bounding the 14

Rademacher complexity. There are a variety of such methods, ranging from simple 15

union bound methods (suitable for finite function classes) to more advanced techniques 16

involving the notion of metric entropy and chaining arguments. We explore the latter 17

techniques in Chapter 5 to follow. This section is devoted to more elementary tech- 18

niques, including those required to prove the classical Glivenko-Cantelli result, and 19

more generally, those that apply to function classes with polynomial discrimination. 20

� 4.3.1 Classes with polynomial discrimination 21

For a given collection of points xn1 = (x1, . . . , xn), the “size” of the set F (xn1 ) provides 22

a sample-dependent measure of the complexity of F . In the simplest case, the set 23

F (xn1 ) contains only a finite number of vectors for all sample sizes, so that its “size” 24

can be measured via its cardinality. For instance, if F consists of a family of decision 25

rules taking binary values (as in Example 4.7), then F (xn1 ) can contain at most 2n 26

elements. Of interest to us are function classes for which this cardinality grows only as 27

a polynomial function of n, as formalized in the following: 28

29
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Definition 4.2 (Polynomial discrimination). A class F of functions with domain

X has polynomial discrimination of order ν ≥ 1 if for each positive integer n and

collection xn1 = {x1, . . . , xn} of n points in X , the set F (xn1 ) has cardinality upper

bounded as

card
(
F (xn1 )

)
≤ (n+ 1)ν . (4.22)

1

2

The significance of this property is that it provides a straightforward approach to con-3

trolling the Rademacher complexity. For any set S ⊂ Rn, we let D : = supx∈S ‖x‖24

denote its maximal width in the ℓ2-norm.5

6

Lemma 4.1. Suppose that F has polynomial discrimination of order ν. Then for all

n ≥ 10 and any collection of points xn1 = (x1, . . . , xn),

Eε

[
sup
f∈F

∣∣ 1
n

n∑

i=1

εif(xi)
∣∣]

︸ ︷︷ ︸
R(F (xn

1 )/n))

≤ 3

√
D2(xn1 ) ν log(n+ 1)

n
,

where D(xn1 ) : = supf∈F

√∑n
i=1 f

2(xi)
n is the ℓ2- radius of the set F (xn1 )/

√
n.

7

8

We leave the proof of this claim for the reader (see Exercise 4.7).9

10

Although Lemma 4.1 is stated as an upper bound on the empirical Rademacher

complexity, it yields as a corollary an upper bound on the Rademacher complexity

Rn(F ) = EX [R(F (Xn
1 /n))], one which involves the expected ℓ2-width EXn

1
[D(X)]. An

especially simple case is when function class is uniformly bounded—say ‖f‖∞ ≤ b for

all f ∈ F—so that D(xn1 ) ≤ b for all samples, and hence Lemma 4.1 implies that

Rn(F ) ≤ 3

√
b2ν log(n+ 1)

n
for all n ≥ 10. (4.23)

Combined with Theorem 4.2, we conclude that any bounded function class with poly-11

nomial discrimination is Glivenko-Cantelli.12

13

What types of function classes have polynomial discrimination? As discussed previ-14

ously in Example 4.4, the classical Glivenko-Cantelli law is based on indicator functions15

of the left-sided intervals (−∞, t]. These functions are uniformly bounded with b = 1,16

and moreover, as shown in the following proof, this function class has polynomial dis-17

crimination of order d = 1. Consequently, Theorem 4.2 combined with Lemma 4.118

yields a quantitative version of Theorem 4.1 as a corollary.19

20
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Corollary 4.1 (Classical Glivenko-Cantelli). Let F (t) = P[X ≥ t] be the CDF of a

random variable X, and let F̂n be the empirical CDF based on n i.i.d. samples Xi ∼ P.

Then

P

[
‖F̂n − F‖∞ ≥ 3

√
log(n+ 1)

n
+ δ

]
≤ 2e−

nδ2

8 for all δ ≥ 0, (4.24)

and hence ‖F̂n − F‖∞ a.s.−→ 0.

1

2

3

Proof. For a given sample xn1 = (x1, . . . , xn) ∈ Rn, consider the set F (xn1 ), where F is

the set of all {0-1}-valued indicator functions of the half-intervals [t,∞) for t ∈ R. If

we order the samples as x(1) ≤ x(2) ≤ . . . ≤ x(n), then they split the real line into at

most n + 1 intervals (including the two end-intervals (−∞, x(1)) and [x(n),∞)). For a

given t, the indicator function I[t,∞) takes the value one for all x(i) ≥ t, and the value

zero for all other samples. Thus, we have shown that for any given sample xn1 , we have

card(F (xn1 )) ≤ n+ 1. Applying Lemma 4.1, we obtain

Eε

[
sup
f∈F

∣∣ 1
n

n∑

i=1

εif(Xi)
∣∣] ≤ 3

√
log(n+ 1)

n
,

and taking averages over the data Xi yields the upper bound Rn(F ) ≤ 3

√
log(n+1)

n . 4

The claim (4.24) then follows from Theorem 4.2. 5

Although the exponential tail bound (4.24) is adequate for many purposes, it is 6

far from the tightest possible. Using alternative methods, we provide a sharper result 7

that removes the
√
log(n+ 1) factor in Chapter 5. See the bibliographic section for 8

references to the sharpest possible results, including control of the constants in the 9

exponent and the pre-factor. 10

� 4.3.2 Vapnik-Chervonenkis dimension 11

Thus far, we have seen that it is relatively straightforward to establish uniform laws for 12

function classes with polynomial discrimination. In certain cases, such as in our proof 13

of the classical Glivenko-Cantelli law, we can verify by direct calculation that a given 14

function class has polynomial discrimination. More broadly, it is of interest to develop 15

techniques for certifying this property, and the theory of Vapnik-Chervonenkis (VC) 16

dimension provides one such class of techniques. 17

Let us consider a function class F in which each function f is binary-valued, taking 18

the values {0, 1} for concreteness. In this case, the set F (xn1 ) from equation (4.11) can 19

have at most 2n elements. 20

21
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Definition 4.3 (Shattering and VC dimension). Given a class F of binary valued

functions, the set xn1 = (x1, . . . , xn) is shattered by F means that card(F (xn1 )) = 2n.

The VC-dimension ν(F ) is the largest integer n for which there is some collection

xn1 = (x1, . . . , xn) of n points that can be shattered by F .

1

2

3

When the quantity ν(F ) is finite, then the function class F is said to be a VC-class.4

We will frequently consider function classes F that consist of indicator functions IS [·],5

for sets S ranging over some class of sets S. In this case, we use S(xn1 ) and ν(S) as6

shorthands for the sets F (xn1 ) and the VC dimension of F , respectively.7

8

Let us illustrate the notions of shattering and VC dimension with some examples:9

Example 4.8 (Intervals in R). Consider the class of all indicator functions for left-sided10

half-intervals on the real line—namely, the class Sleft : =
{
(−∞, a] | a ∈ R}. Implicit11

in the proof of Corollary 4.1 is a calculation of the VC dimension for this class. We12

first note that for any single point x1, both subsets ({x1} and the empty set ∅) can be13

picked out by the class of left-sided intervals {(−∞, a] | a ∈ R}. But given two distinct14

points x1 < x2, it is imposssible to find a left-sided interval that contains x2 but not x1.15

Therefore, we conclude that ν(Sleft) = 1. In the proof of Corollary 4.1, we showed more16

specifically that for any collection xn1 = {x1, . . . , xn}, we have card(Sleft(x
n
1 )) ≤ n+ 1.17

Now consider the class of all two-sided intervals over the real line—namely, the

class Stwo : =
{
(b, a] | a, b ∈ R such that b < a

}
. The class Stwo can shatter any two-

point set. However, given three distinct points x1 < x2 < x3, it cannot pick out

the subset {x1, x3}, showing that ν(Stwo) = 2. For future reference, let us also upper

bound the shattering coefficient of Stwo. Note that any collection of n distinct points

x1 < x2 < . . . < xn−1 < xn divides up the real line into (n + 1) intervals. Thus, any

set of the form (−b, a] can be specified by choosing one of (n+ 1) intervals for b, and a

second interval for a. Thus, a crude upper bound on the shatter coefficient is

card(Stwo(xn)) ≤ (n+ 1)2,

showing that this class has polynomial discrimination with degree ν = 2. ♣18

Thus far, we have seen two examples of function classes with finite VC dimension,19

both of which turned out to also polynomial discrimination. Is there a general con-20

nection between the VC dimension and polynomial discriminability? Indeed, it turns21

out that any finite VC class has polynomial discrimination with degree at most the VC22

dimension; this fact is a deep result that was proved independently (in slightly different23

forms) by Vapnik and Chervonenkis, Sauer and Shelah. We refer the reader to the24

bibliographic section for further discussion and references.25

In order to understand why this fact is surprising, note that for a given set class S,
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the definition of VC dimension implies that for all n > ν(S), we must have card(S(xn1 )) <

2n for all collections xn1 of n samples. However, at least in principle, there could exist

some subset with

card(S(xn1 )) = 2n − 1,

which is not significantly different than 2n. The following result shows that this is not 1

the case; indeed, for any VC-class, the cardinality of S(xn1 ) can grow at most polyno- 2

mially in n. 3

4

Proposition 4.3 (Vapnik-Chervonenkis, Sauer and Shelah). Consider a set class S

with ν(S) <∞. Then for any collection of points xn1 = (x1, . . . , xn), we have

card(S(xn1 ))
(i)

≤
ν(S)∑

i=0

(
n

i

)
(ii)

≤ (n+ 1)ν(S). (4.25)

5

6

7

We prove inequality (i) in the Appendix. Given inequality (i), inequality (ii) can be 8

established by elementary combinatorial arguments, so we leave it as an exercise for the 9

reader (part (a) of Exercise 4.11). Part (b) of the same exercise establishes a sharper 10

upper bound. 11

� 4.3.3 Controlling the VC dimension 12

Since classes with finite VC dimension have polynomial discrimination, it is of interest 13

to develop techniques for controlling the VC dimension. 14

Basic operations 15

The property of having finite VC dimension is preserved under a number of basic op- 16

erations, as summarized in the following. 17

18

Proposition 4.4. Let S and T be set classes, each with finite VC dimensions ν(S)

and ν(T) respectively. Then each of the following set classes also have finite VC

dimension:

(a) The set class Sc : =
{
Sc | S ∈ S

}
, where Sc denotes the complement of S.

(b) The set class S ⊔ T : =
{
S ∪ T | S ∈ S, T ∈ T

}
.

(c) The set class S ⊓ T : =
{
S ∩ T | S ∈ S, T ∈ T

}
.

19

20

We leave the proof of this result as an exercise for the reader. 21
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Vector space structure1

Any class G of real-valued functions defines a class of sets by the operation of taking2

subgraphs. In particular, given a real-valued function g : X → R, its subgraph at level3

zero is the subset Sg : = {x ∈ X | g(x) ≤ 0}. In this way, we can associate to G the4

collection of subsets S(G ) : =
{
Sg, g ∈ G }, which we refer to as the subgraph class5

of G . Many interesting classes of sets are naturally defined in this way, among them6

half-spaces, ellipsoids and so on. In many cases, the underlying function class G is a7

vector space, and the following result allows us to upper bound the VC dimension of8

the associated set class S(G ).9

10

Proposition 4.5 (Finite-dimensional vector spaces). Let G be a vector space of

functions g : Rd → R with dimension dim(G ) < ∞. Then the subgraph class S(G )

has VC dimension at most dim(G ).

11

12

Proof. By the definition of VC dimension, we need to show that no collection of

n = dim(G ) + 1 points in Rd can be shattered by S(G ). Fix a collection xn1 = {x1, . . . , xn}
of n points in Rd, and consider the linear map L : G → Rn given by L(g) = (g(x1), . . . , g(xn)).

By construction, the range of the mapping L is a linear subspace of Rn with dimension

at most dim(G ) = n− 1 < n. Therefore, there must exist a non-zero vector γ ∈ Rn such

that 〈γ, L(g)〉 = 0 for all g ∈ G . We may assume without loss of generality that at

least one γi is positive, and then write

∑

{i |γi≤0}

(−γi)g(xi) =
∑

{i | γi>0}

γig(xi) for all g ∈ G . (4.26)

Now suppose that there exists some g ∈ G such that the associated subgraph set13

Sg = {x ∈ Rd | g(x) ≤ 0} includes only the subset {xi | γi ≤ 0}. For such a function g,14

the right-hand side of equation (4.26) would be strictly positive while the left-hand side15

would be non-positive, which is a contradiction. We conclude that G fails to shatter16

the set {x1, . . . , xn}, as claimed.17

Let us illustrate the use of Proposition 4.5 with some examples:18

Example 4.9 (Linear functions in Rd). For a pair (a, b) ∈ Rd × R, define the function19

fa,b(x) : = 〈a, x〉+ b, and consider the family L d : =
{
fa,b | (a, b) ∈ Rd×R

}
of all such20

linear functions. The associated subgraph class S(L d) corresponds to the collection of21

all half-spaces of the form Ha,b : = {x ∈ Rd | 〈a, x〉 + b ≤ 0}. Since the family L d
22

forms a vector space of dimension d + 1, we obtain as an immediate consequence of23

Proposition 4.5 that S(L d) has VC dimension at most d+ 1.24

For the special case d = 1, let us verify this statement by a more direct calculation.

In this case, the class S(L 1) corresponds to the collection of all left-sided or right-sided
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intervals—that is,

S(L 1) =
{
(−∞, t] | t ∈ R

}
∪

{
[t,∞) | t ∈ R

}
.

Given any two distinct points x1 < x2, the collection of all such intervals can pick 1

out all possible subsets. However, given any three points x1 < x2 < x3, there is no 2

interval contained in S(L 1) that contains x2 while excluding both x1 and x3. This 3

calculation shows that ν(S(L 1)) = 2, which matches the upper bound obtained from 4

Proposition 4.5. More generally, it can be shown that the VC dimension of S(L d) is 5

d+ 1, so that Propsition 4.5 yields a sharp result in all dimensions. ♣ 6

Example 4.10 (Spheres in Rd). Consider the sphere Sa,b : = {x ∈ Rd | ‖x− a‖2 ≤ b},
where (a, b) ∈ Rd × R+ specify its center and radius, respectively, and let Sd

sphere denote

the collection of all such spheres. If we define the function

fa,b(x) : = ‖x‖22 − 2
d∑

j=1

ajxj + ‖a‖22 − b2,

then we have Sa,b = {x ∈ Rd | fa,b(x) ≤ 0}, so that the sphere Sa,b is a sub-graph of 7

the function fa,b. 8

In order to leverage Proposition 4.5, we first define a feature map φ : Rd → Rd+1

via φ(x) : = (x1, . . . , xd, 1), and then consider functions of the form

gc(x) : = 〈c, φ(x)〉+ ‖x‖22, where c ∈ Rd+1.

The family of functions {gc, c ∈ Rd+1} is a vector space of dimension d + 1, and it 9

contains the function class {fa,b, (a, b) ∈ Rd × R+}. Consequently, by applying Propo- 10

sition 4.5 to this larger vector space, we conclude that ν(Sd
sphere) ≤ d + 2. This bound 11

is adequate for many purposes, but is not sharp: a more careful analysis shows that 12

the VC dimension of spheres in Rd is actually d + 1. See Exercise 4.9 for an in-depth 13

exploration of the case d = 2. 14

♣ 15

Appendix A: Proof of Proposition 4.3 16

We prove inequality (i) in Proposition 4.3 by establishing the following more general 17

inequality: 18

Lemma 4.2. Let A be a finite set and let U be a class of subsets of A. Then

card(U) ≤ card(
{
B ⊆ A | B is shattered by U

}
). (4.27)
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To see that this lemma implies inequality (i), note that if B ⊆ A is shattered by S,

then we must have card(B) ≤ ν(S). Consequently, if we let A = {x1, . . . , xn} and set

U = S ∩A, then Lemma 4.2 implies that

card(S(xn1 )) = card(S ∩A) ≤ card
({
B ⊆ A | |B| ≤ ν(S)

})
≤

ν(S)∑

i=0

(
n

i

)
,

as claimed.1

It remains to prove Lemma 4.2. For a given x ∈ A, let us define an operator on sets

U ∈ U via

Tx(U) =

{
U\{x} if x ∈ U and U\{x} /∈ U
U otherwise.

We let Tx(U) be the new class of sets defined by applying Tx to each member of U—2

namely, Tx(U) : = {Tx(U) | U ∈ U}.3

We first claim that Tx is a one-to-one mapping between U and Tx(U), and hence4

that card(Tx(U)) = card(U). To establish this claim, for any pair of sets U,U ′ ∈ U such5

that Tx(U) = Tx(U
′), we must prove that U = U ′. We divide the argument into three6

separate cases:7

• Case 1: x /∈ U and x /∈ U ′. Given x /∈ U , we have Tx(U) = U , and hence Tx(U
′) =8

U . Moreover, x /∈ U ′ implies that Tx(U
′) = U ′. Combining the equalities yields9

U = U ′.10

• Case 2: x /∈ U and x ∈ U ′. In this case, we have Tx(U) = U = Tx(U
′), so that11

x ∈ U ′ but x /∈ Tx(U
′). But this condition implies that Tx(U

′) = U ′\{x} /∈ U ,12

which contradicts the fact that Tx(U
′) = U ∈ U . By symmetry, the case x ∈ U13

and x /∈ U ′ is identical.14

• Case 3: x ∈ U∩U ′. If both of U\{x} and U ′\{x} belong to U , then Tx(U) = U and15

Tx(U
′) = U ′, from which U = U ′ follows. If neither of U\{x} nor U ′\{x} belong16

to U , then we can conclude that U\{x} = U ′\{x}, and hence U = U ′. Finally,17

if U\{x} /∈ U but U ′\{x} ∈ U , then Tx(U) = U\{x} /∈ U but Tx(U
′) = U ′ ∈ U ,18

which is a contradiction.19

We next claim that if Tx(U) shatters a set B, then so does U . If x /∈ B, then both U20

and Tx(U) pick out the same set of subsets of B. Otherwise, suppose that x ∈ B. Since21

Tx(U) shatters B, for any subset B′ ⊆ B\{x}, there is a subset T ∈ Tx(U) such that22

T ∩ B = B′ ∪ {x}. Since T = Tx(U) for some subset U ∈ U and x ∈ T , we conclude23

that both U and U\{x} must belong to U , so that U also shatters B.24

Using the fact that Tx preserves cardinalities and does not increase shattering25

numbers, we can now conclude the proof of the lemma. Define the weight function26
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ω(U) = ∑
U∈U card(U), and note that applying a transformation Tx can only reduce this 1

weight function: i.e., ω(Tx(U)) ≤ ω(U). Consequently, by applying the transformations 2

{Tx} to U repeatedly, we can obtain a new class of sets U ′ such that card(U) = card(U ′) 3

and the weight ω(U ′) is minimal. Then for any U ∈ U ′ and any x ∈ U , we have 4

U\{x} ∈ U ′. (Otherwise, we would have ω(Tx(U ′)) < ω(U ′), contradicting minimality.) 5

Therefore, the set class U ′ shatters any one of its elements. Since U shatters at least as 6

many subsets as U ′, and card(U ′) = card(U) by construction, the claim (4.27) follows. 7

� 4.4 Bibliographic details and background 8

First, a technical remark regarding measurability: in general, the quantity ‖Pn − P‖F

need not be measurable, since the function class F may contain an uncountable number

of elements. If the function class is separable, then we may simply take the supremum

over the countable dense basis. In general, there are various ways of dealing with this

issue, including the use of outer probability (c.f. van der Vaart and Wellner [vdVW96]).

Here we instead adopt the following convention. For any finite class of functions G

contained within F , the variable ‖Pn − P‖G is well-defined, so that it is sensible to

define

‖Pn − P‖F : = sup
{
‖Pn − P‖G | G ⊂ F , G has finite cardinality

}
.

By using this definition, we can always think instead about suprema over finite sets. 9

Theorem 4.1 was originally proved by Glivenko [Gli33] for the continuous case, and

by Cantelli [Can33] in the general setting. The non-asymptotic form of the Glivenko-

Cantelli theorem given in Corollary 4.1 can be sharpened substantially. For instance,

Dvoretsky, Kiefer and Wolfowitz [DKW56] prove that there is a constant C independent

of F and n such that

P
[
‖F̂n − F‖∞ ≥ δ

]
≤ C e−2nδ2 for all δ ≥ 0. (4.28)

Massart [Mas90] establishes the sharpest possible result, including control of the leading 10

constant. 11

The Rademacher complexity, and its relative the Gaussian complexity, have a lengthy 12

history in the study of Banach spaces using probabilistic methods; for instance, see the 13

books [MS86, Pis89, LT91]. In Chapter 5, we develop further connections between these 14

two forms of complexity, and the related notion of metric entropy. Rademacher and 15

Gaussian complexities have also been studied in the specific context of uniform laws 16

of large numbers and empirical risk minimization (e.g.,[BM02, BBM05, Kol01, Kol06, 17

KP00, vdVW96]). 18

The proof of Proposition 4.3 is adapted from Ledoux and Talagrand [Led01], who 19

credit the approach to Frankl [Fra83]. Exercise 5.4 is adapted from Problem 2.6.3 from 20
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van der Vaart and Wellner [vdVW96]. The proof of Proposition 4.5 is adapted from1

Pollard [Pol84], who credits it to Steele [Ste78] and Dudley [Dud78].2

� 4.5 Exercises3

Exercise 4.1. Recall that the functional γ is continuous in the sup-norm at F if for4

all ǫ > 0, there exists a δ > 0 such that ‖G− F‖∞ ≤ δ implies that |γ(G)− γ(F )| ≤ ǫ.5

(a) Given n i.i.d. samples with law specified by F , let F̂n be the empirical CDF. Show6

that if γ is continuous in the sup-norm at F , then γ(F̂n)
prob.−→ γ(F ).7

(b) Which of the following functionals are continuous with respect to the sup-norm?8

Prove or disprove.9

(i) The mean functional F 7→
∫
xdF (x).10

(ii) The Cramér-von Mises functional F 7→
∫
[F (x)− F0(x)]

2dF0(x).11

(iii) The quantile functional Qp(F ) = inf{t ∈ R | F (t) ≥ p}.12

Exercise 4.2. Recall from Example 4.5 the class S of all subsets S of [0, 1] for which

S has a finite number of elements. Prove that the Rademacher complexity satisfies the

lower bound

Rn(S) = EX,ε

[
sup
S∈S

∣∣ 1
n

n∑

i=1

εiIS [Xi]
∣∣] ≥ 1

2
. (4.29)

Discuss the connection to Theorem 4.2.13

Exercise 4.3. In this exercise, we work through the proof of Proposition 4.2.14

(a) Recall the re-centered function class F = {f − E[f ] | f ∈ F}. Show that

EX,ε[‖Rn‖F̄ ] ≥ EX,ε[‖Rn‖F ]−
supf∈F |E[f ]|√

n
.

(b) Use concentration results to complete the proof of Proposition 4.2.15

Exercise 4.4. Consider the function class

F =
{
x 7→ sign(〈θ, x〉) | θ ∈ R

d, ‖θ‖2 = 1
}
,

corresponding to the {−1,+1}-valued classification rules defined by linear functions in

Rd. Supposing that d ≥ n, let xn1 = {x1, . . . , xn} be a collection of vectors in Rd that
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are linearly independent. Show that the empirical Rademacher complexity satisfies

R(F (xn1 )/n) = Eε

[
sup
f∈F

| 1
n

n∑

i=1

εif(xi)
∣∣] = 1.

Discuss the consequences for empirical risk minimization over the class F . 1

Exercise 4.5. Prove the following properties of the Rademacher complexity. 2

(a) Rn(F ) = Rn(conv(F )). 3

(b) Show that Rn(F +G ) ≤ Rn(F )+Rn(G ). Give an example to demonstrate that 4

this bound cannot be improved in general. 5

(c) Given a fixed and uniformly bounded function g, show that

Rn(F + g) ≤ Rn(F ) +
‖g‖∞√
n
. (4.30)

Exercise 4.6. Let S and T be two classes of sets with finite VC dimensions. Which of 6

the following set classes have finite VC dimension? Prove or disprove. 7

(a) The set class Sc : =
{
Sc | S ∈ S}, where Sc denotes the complement of the set S. 8

(b) The set class S ⊓ T : =
{
S ∩ T | S ∈ S, T ∈ T}. 9

(c) The set class S ⊔ T : =
{
S ∪ T | S ∈ S, T ∈ T}. 10

Exercise 4.7. Prove Lemma 4.1. 11

Exercise 4.8. Consider the class of left-sided half-intervals in Rd:

S
d
left : =

{
(−∞, t1]× (−∞, t2]× · · · × (−∞, td] | (t1, . . . , td) ∈ R

d
}
.

Show that for any collection of n points, we have card(Sd
left(x

n
1 )) ≤ (n + 1)d and 12

ν(Sd
left) = d. 13

Exercise 4.9. Consider the class of all spheres in R2: —that is

S
2
sphere : =

{
Sa,b, (a, b) ∈ R

2 × R+

}
, (4.31)

where Sa,b : = {x ∈ R2 | ‖x − a‖2 ≤ b} is the sphere of radius b ≥ 0 centered at 14

a = (a1, a2). 15

(a) Show that S2
sphere can shatter any subset of three points that are not collinear. 16
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(b) Show that for any subset of four points, the balls can discriminate at most 15 out1

of 16 of the possible subsets, and conclude that ν(S2
sphere) = 3.2

Exercise 4.10. Show that the class Cd
cc of all closed and convex sets in Rd does not3

have finite VC dimension. (Hint: Consider a set of n points on the boundary of the4

unit ball.)5

Exercise 4.11. (a) Prove inequality (ii) in Proposition 4.3.6

(b) Prove the sharper upper bound card(S(xn1 )) ≤
(
e n
ν

)ν
. (Hint: You might find the7

result of Exercise 2.9 useful.)8
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