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Chapter 8

The exponential family and
generalized linear models

In this chapter we extend the scope of our modeling toolbox to accommodate a variety of additional
data types, including counts, time intervals and rates. We introduce the exponential family of dis-
tributions, a family that includes the Gaussian, binomial, multinomial, Poisson, gamma, Rayleigh
and beta distributions, as well as many others. We consider both unconditional and conditional
models involving this family.

Much of our discussion is focused on the conditional setting, in which we have a directed model,
X — Y, with X and Y observed, and with Y having an exponential family distribution for each
value of X. To parameterize this conditional distribution we introduce a class of models known as
generalized linear models (GLIM’s). GLIM’s are a general category of models that include linear
regression and linear classification models as special cases. As in those models, GLIM’s retain an
important role for linearity, while introducing appropriate nonlinearities so as to cope with the
idiosyncracies of the particular exponential family distribution at hand. GLIM’s have the dual
virtue of systematizing the work that we have done thus far and showing how to extend that work
to handle a wide range of additional data types.

At first blush this chapter may appear to involve a large dose of mathematical detail, but
appearances shouldn’t deceive—most of the detail involves working out examples that show how
the exponential family and GLIM’s relate to more familiar material. The real message of this
chapter is the simplicity and elegance of exponential family and GLIM methods. Once the new
ideas are mastered, it is often easier to work within the general exponential family and GLIM
frameworks than with specific instances.

8.1 The exponential family
A probability density in the exponential family takes the following general form:
p(z|n) = h(z)exp{n"T(x) — A(n)} (8.1)
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for a parameter vector 7, often referred to as the natural parameter, and for given functions 7', a, and
h. The function T(X) is referred to as a sufficient statistic; the reasons for this nomenclature are
discussed below. The form of the function h(z) is not of fundamental importance; it simply reflects
the underlying measure with respect to which p(z|7) is a density. Of rather more importance is
the function A(n). Integrating Eq. (8.1) with respect to z, we have:

Aln) =log [ (o) exp{"T(x)} do (8.2)

where we see that A(n) can be viewed as the logarithm of a normalization factor. The set of 1 for
which this integral is finite is referred to as the natural parameter space.
It is also common to write the exponential family distribution in the following way:

p(z|n) = ﬁh(@ exp {7 T(2)}, (8.3)

which is equivalent to if we let A(n) = log Z(n). Although we focus on Eq. (8.1) throughout this
chapter, we will also make use of Eq. (8.72) in later chapters.

8.1.1 Examples

The Bernoulli distribution

The probability mass function of a Bernoulli random variable X is given as follows:
plz|m) = 7°(1-m)'® (8.4)
= exp {log (%) z + log(1 — W)} . (8.5)
-7

where our trick, here and throughout the chapter, is to take the exponential of the logarithm of
the original distribution. Thus we see that the Bernoulli distribution is an exponential family
distribution with:

™

no= 1 (8.6)
T(z) = (8.7)
A(n) = —log(l —m) =log(l+ e (8.8)
hiz) = 1. (8.9)

Note moreover that the relationship between 7 and = is invertible. Solving Eq. (8.6) for 7, we have:

_ 1
14+e

(8.10)

which is the logistic function.
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The Poisson distribution

The probability mass function of a Poisson random variable is given as follows:

AeA
p(z|A) = o (8.11)
Rewriting this expression we obtain:
1
p(z[A) = — exp{zlog A — A}. (8.12)
x!
Thus the Poisson distribution is an exponential family distribution, with:
n = logA (8.13)
T(z) = =z (8.14)
Aln) = A=¢€" (8.15)
1
h(z) = o (8.16)
Moreover, we can obviously invert the relationship between n and A:
A=e. (8.17)
The Gaussian distribution
The (univariate) Gaussian distribution can be written as follows:
polme) = e |-} (8.18
’ V2ro 202
1 7 1 1,
This is in the exponential family form, with:
_ | wo?
n = [ Al ] (8.20)
T
T(z) = [ o2 ] (8.21)
2 2
M Uil 1
A = —+4+lno=—-"=+—=-In(-2 8.22
1
hz) = — (8.23)

T3

Note in particular that the univariate Gaussian distribution is a two-parameter distribution and
that its sufficient statistic is a vector.

The multivariate Gaussian distribution can also be written in the exponential family form; we
leave the details to Exercise 7?7 and Chapter 13.
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The multinomial distribution

As a final example, let us consider the multinomial distribution. Let X = (X1, Xo,...,X,,) be a
collection of integer-valued random variables representing event counts, where X; represents the
count of the number of times the ith event occurs in a set of n independent trials. Let 7; represent
the probability of the ith event occuring in any given trial. We have:

T T T
1 2_..,n.m

T Mg m o

P@lm) = (8.24)

as the probability mass function for such a collection.
Following the strategy of our previous examples, we rewrite the multinomial distribution as

p(z|m) =exp {Zx, lnm} . (8.25)

=1

follows:

While this shows that the multinomial distribution is in the exponential family, there are some
troubling aspects to this expression. In particular it appears that the A(n) term is equal to zero.
As we will be seeing (in Section 8.1.2), one of the principal virtues of the exponential family form
is that moments can be calculated by taking derivatives of A(n); thus, the disappearance of this
term is unsettling.

Our problem is caused by the fact that the parameters satisfy a linear constraint, namely:
Yo m = 1. Let us define an exponential family to be of full rank if the parameters satisfy
no such constraint—technically we assume that an m-dimensional parameter space contains an
open rectangle of dimension m. (In the case of the multinomial the parameters lie on an m — 1
dimensional simplex, and thus the parameter space does not contain a rectangle of dimension m).
To achieve a full rank representation for the multinomial, we parameterize the distribution using
the first m — 1 components of 7:

plz|m) = exp {izz lnm} (8.26)
::jl m-1 m—1

= exp { Z z;Inm; + (1 — Z :1:Z> In (1 — Z 7rz~> } (8.27)
7;:—11 o m—1

= exp { ; In (Tg%) z; +In (1 - 2 7rz-> } . (8.28)

where we have used the fact that 7, =1 — Z;’;l .
From this representation we obtain:

g T
| | =In|—2> 8.29
n (i) () e

for i =1,...,m — 1. For convenience we also can define 7,,; Eq. (8.29) implies that if we do so we
must take 7, = 0.
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As in the other examples of exponential family distributions, we can invert Eq. (8.29) to obtain
a mapping that expresses m; in terms of 7;. Taking the exponential of Eq. (8.29) and summing we

obtain:
eni

_ 8.30
s (8.30)

T =

which is the softmax function.
Finally, from Eq. (8.28) we obtain:

m—1 m
A(n) =—In (1 - Z Wi) =In (Z em) (8.31)
i=1 i=1
as the log normalization factor for the multinomial.

8.1.2 Moments

An appealing feature of the exponential family representation is that we can obtain moments of
the distribution by taking derivatives of the log normalization function A(n). Before establishing
this fact, let us consider an example.

Recall that in the case of the Bernoulli distribution we have A(n) = log(1 + €"). Taking a first
derivative yields:

dA e

- .32
dn 1+en (8:32)
= ! 8.33)
- 14em '
= p, (8.34)
which is the mean of a Bernoulli variable.
Taking a second derivative yields:
d’a du
— = — 8.35
= p(l—p), (8.36)

which is the variance of a Bernoulli variable.

We now show that in general the first derivative of A(n) is equal to the mean of T(X). We
treat the case of scalar 7 for simplicity; the (straightforward) extension to vector 7 is considered in
Exercise ?7?. Calculating the first derivative of A(n) yields:

dA d
an = dn {log/exp{nT(w)}h(x)da:} (8.37)
JT(z) exp{nT (z) }h(x)dx
[ exp{nT(z)}h(z)dz (8.38)
_ / T(z) exp{n"T(z) — A(n)Yh(z)de (8.39)

— ET(X). (8.40)
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Thus we see that the first derivative of A(n) is equal to the mean of the sufficient statistic.
Let us now take a second derivative:

g; - /Tww@MﬂM—AWH@@PWWMMMM (8.41)
— [ 1@ exp{uT(s) - AHT(@) - BTCO)ha)do (8.42)
- /ﬂ@mmmnm—mmmmm—Eﬂm/iummMHm—ummmm
= ET?(z) — (ET(X))? (8.43)
= Var[T(z)], (8.44)

and thus we see that the second derivative of A(n) is equal to the variance of the sufficient statistic.

Example

Let us calculate the moments of the univariate Gaussian distribution. Recall the form taken by
A(n):

A) =~ Lin(—21p), (8.45)

where 1 = p/0? and 1y = —1/202.
Taking the derivative with respect to 7; yields:

0A m

— = — 8.46
om 212 (8.46)
plo’
- 8.47
_— (8.48)
which is the mean of X, the first component of the sufficient statistic.
Taking a second derivative with respect to n; yields:
A 1
—= = - (8.49)
ong 2n9
= o2, (8.50)

which is the variance of X.

Given that X? is the second component of the sufficient statistic, we can also compute the
variance by calculating the partial of a with respect to 72. Moreover, we can calculate third
moments by computing the mixed partial, and fourth moments by taking the second partial with
respect to 7o (see Exercise ?77).
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8.1.3 The moment parameterization

In the previous section we have seen that it is possible to obtain the mean, y £ ET(X), as a

function of the canonical parameter n:
dA

=G (8.51)

1

It turns out that this relationship is invertible.

To see this, note from Eq. (8.44) that the second derivative of A(n) is a variance and hence
positive. This implies that A(n) is a convex function. For a convex function there is necessarily
a one-to-one relationship between the argument to the function and the first derivative of the
function. Hence the mapping from 7 to u is invertible.

We will represent the inverse mapping as 7 = 9() in the remainder of the chapter.

This argument implies that a distribution in the exponential family can be parameterized not
only by n—the canonical parameterization—but also by u—the moment parameterization. Many
distributions are traditionally parameterized using the moment parameterization; indeed, in Sec-
tion 8.1.1 our starting point was the moment parameterization for each of the examples. We
subsequently reparameterized these distribution using the canonical parameterization. We also
computed the mapping from 7 to p in each case, recovering some familiar functions, including the
logistic function and the softmax function. We will return to this topic in Section 8.2 when we
discuss generalized linear models.

8.1.4 Sufficiency

In this section we discuss the important concept of sufficiency. Sufficiency characterizes what is
essential in a data set, or, alternatively, what is inessential and can therefore be thrown away.
While the notion of sufficiency is broader than the exponential family, the ties to the exponential
family are close, and it is natural to introduce the concept here.

A statistic is a function of a random variable. In particular, let X be a random variable and let
T(X) be a statistic. Suppose that the distribution of X depends on a parameter 6. The intuitive
notion of sufficiency is that 7(X) is sufficient for € if there is no information in X regarding 6
beyond that in T'(X). That is, having observed T'(X), we can throw away X for the purposes of
inference with respect to 6. Let us make this notion more precise.

Sufficiency is defined in somewhat different ways in the Bayesian and frequentist frameworks.
Let us begin with the Bayesian approach, which is arguably more natural. In the Bayesian approach,
we treat f as a random variable, and are therefore licensed to consider conditional independence
relationships involving #. We say that T'(X) is sufficient for  if the following conditional indepen-
dence statement holds:

OULX |T(X). (8.52)

We can also write this in terms of probability distributions:
p(0|T(z),z) = p(0|T(x)). (8.53)

Thus, as shown graphically in Figure 8.1(a), sufficiency means that 0 is independent of X, when
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X T(X) 0

O—0—0O

(a)

X T(X) 0

O—@—0

(b)

X T (X) 0

O—0—0O

Figure 8.1: Graphical models whose conditional independence properties capture the notion of

sufficiency in three equivalent ways.

we condition on T'(X). This captures the intuitive notion that 7(X) contains all of the essential
information in X regarding 6.

To obtain a frequentist definition of sufficiency, let us consider the graphical model in Fig-
ure 8.1(b). This model expresses the same conditional independence semantics as Figure 8.1(a),
asserting that 6 is independent of X conditional on T(X), but the model is parameterized in a
different way. From the factorized form of the joint probability we obtain:

p(z|T(x),0) = p(z|T(z)). (8.54)

This expression suggests a frequentist definition of sufficiency. In particular, treating 8 as a label
rather than a random variable, we define T'(X) to be sufficient for 6 if the conditional distribution
of X given T'(X) is not a function of 6.

Both the Bayesian and frequentist definitions of sufficiency imply a factorization of p(z | 6), and
it is this factorization which is generally easiest to work with in practice. To obtain the factorization
we use the undirected graphical model formalism. Note in particular that Figure 8.1(c) expresses
the same conditional independence semantics as Figure 8.1(a) and Figure 8.1(b). Moreover, from
Figure 8.1(c), we know that we can express the joint probability as a product of potential functions
¥1 and thy:

p(:l:,T(x),H) = ¢1(T($),9)¢2(.’1},T(I)), (8'55)
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where we have absorbed the constant of proportionality Z in one of the potential functions. Now
T'(z) is a deterministic function of z, which implies that we can drop T'(z) on the left-hand side of
the equation. Dividing by p(6) we therefore obtain:

p(z|0) = g(T(x),0)h(z,T(z)), (8.56)

for given functions g and h. Although we have motivated this result by using a Bayesian calculation,
the result can be utilized within either the Bayesian or frequentist framework. Its equivalence to
the frequentist definition of sufficiency is known as the Neyman factorization theorem.

8.1.5 Sufficiency and the exponential family

An important feature of the exponential family is that it one can obtain sufficient statistics by
inspection, once the distribution is expressed in the standard form. Recall the definition:

p(z|n) = h(z) exp{n" T(z) — A(n)}. (8.57)

From Eq. (8.56) we see immediately that 7'(X) is a sufficient statistic for 7.

8.1.6 IID sampling

The reduction obtainable by using a sufficient statistic is particularly notable in the case of
IID sampling. Suppose that we have a collection of N independent random variables, X =
(X1,Xo,...,Xn), characterized by the same exponential family density. Taking the product, we
obtain the joint density:

N N N
pa|n) = [] M) exp{nT(a) — Aln)} = (H h(:m) exp {nT 3 T(2a) - NA(n)} . (8.58)
n=1

From this result we see that X is itself an exponential distribution, with sufficient statistic Zivzl T(Xy).
For several of the examples we discussed earlier (in Section 8.1.1), including the Bernouilli, the
Poisson, and the multinomial distributions, the sufficient statistic 7(X) is equal to the random
variable X. For a set of NV IID observations from such distributions, the sufficient statistic is equal
to 27]:[:1 . Thus in this case, it suffices to maintain a single value, the sum of the observations.
The individual data points can be thrown away.
For the univariate Gaussian the sufficient statistic is the pair T(X) = (X, X2), and thus for N
ITD Gaussians it suffices to maintain the sum Z,IIV:I Zn, and the sum of squares Z;V:l z2.

8.1.7 Maximum likelihood estimates

In this section we show how to obtain maximum likelihood estimates in exponential family distri-
butions. We obtain a generic formula which generalizes our earlier work on density estimation in
Chapter 5.
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Consider an IID data set, D = (z1,z2,...,zy). From Eq. (8.58) we obtain the following log

likelihood: N N
umm=m<ﬂm%ﬁ+f<ZTmO—Nmm (8.59)
n=1 n=1

Taking the gradient with respect to 7 yields:

N
Vol =Y T(zn) — NV, A(n), (8.60)
n=1
and setting to zero gives:
N
. 1
wazﬁgﬂ%y (8.61)

Finally, defining p £ E[T(z)], and recalling Eq. (8.40), we obtain:

AL = > T(zn) (8.62)

as the general formula for maximum likelihood estimation in the exponential family.

It should not be surprising that our formula involves the data only via the sufficient statis-
tic Zﬁ;l T(X,). This gives operational meaning to sufficiency—for the purpose of estimating
parameters we retain only the sufficient statistic.

For distributions in which 7'(X) = X, which include the the Bernoulli distribution, the Poisson
distribution, and the the multinomial distribution, our result shows that the sample mean is the
maximum likelihood estimate of the mean.

For the univariate Gaussian distribution, we see that the sample mean is the maximum like-
lihood estimate of the mean and the sample variance is the maximum likelihood estimate of the
variance. For the multivariate Gaussian we obtain the same result, where by “variance” we mean
the covariance matrix.

8.1.8 Maximum likelihood and the Kullback-Leibler divergence

In this section we point out a simple relationship between the maximum likelihood problem and
the Kullback-Leibler (KL) divergence. This relationship is general; it has nothing to do specifically
with the exponential family. We discuss it in the current chapter, however, because we have a
hidden agenda. Our agenda, to be gradually revealed in Chapters 9, 11 and 19, involves building
a number of very interesting and important relationships between the exponential family and the
Kullback-Leibler (KL) divergence. By introducing a statistical interpretation of the KL divergence
in the current chapter, we hope to hint subliminally at deeper connections to come.

To link the KL divergence and maximum likelihood, let us first define the empirical distribution,
p(z). This is a distribution which places a point mass at each data point z, in our data set D. We



8.1. THE EXPONENTIAL FAMILY 13

have:
N
~ a -
z) = N 321 3z, zn), (8.63)

where 0(z,z,) is a Kronecker delta function in the continuous case. In the discrete case, 6(z,x,)
is simply a function that is equal to one if its arguments agree and equal to zero otherwise.

If we integrate (in the continuous case) or sum (in the discrete case) p(x) against a function of
z, we evaluate that function at each point z,. In particular, the log likelihood can be written this
way. In the discrete case we have:

> b(z) log p(x | 0) Z Z(smn log p(z | 0) (8.64)

x

= % Z Z d(z,z,)logp(z|0) (8.65)

n=1 =
N
= ﬁZbgp T | 60) (8.66)
1
= O[D). (8.67)

Thus by computing a cross-entropy between the empirical distribution and the model, we obtain
the log likelihood, scaled by the constant 1/N. We obtain an identical result in the continuous case
by integrating.

Let us now calculate the KL divergence between the empirical distribution and the model
p(z]0). We have:

D) 16 10) = S5 g Pla) (8.:68)
= pr log p(x) Zp ) logp(z]0) (8.69)

= +Zp ) log (= —Nl(9ID)- (8.70)

The first term, ) p(z)logp(z), is independent of §. Thus, the minimizing value of § on the
left-hand side is equal to the maximizing value of § on the right-hand side.

In other words: minimizing the KL divergence to the empirical distribution is equivalent to
mazimizing the likelihood. This simple result will prove to be very useful in our later work.

8.1.9 Conjugacy and Bayesian estimates

[Section not yet written].
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X

Y,
N

Figure 8.2: The graphical model representation of a generalized linear model.

8.2 Generalized linear models

We now turn to problems involving a pair of variables, X and Y, where both X and Y are assumed
to be observed (see Figure 8.2). As in the linear regression and (discriminative) linear classification
models that we discussed in Chapters 6 and 7, we focus on the conditional relationship between X
and Y.

A common feature of both the linear regression and discriminative linear classification models
is a particular choice of representation for the conditional expectation of Y. Letting u denote the
modeled value of the conditional expectation, we can summarize the structural component of both
types of models by writing:

p=f(0%z). (8.71)

In the case of linear regression the function f(-) is the identity function. For the linear classification
models, we studied a variety of possible choices for f(-), including the logistic function (for logistic
regression) and the cumulative Gaussian (for probit regression).

To complete the model specification, we endow Y with a particular conditional probability
distribution, having p as a parameter. For linear regression, this distribution is Gaussian, whereas
for the linear classification models, this distribution is Bernoulli (for the binary case) or multinomial
(for the multiway case).

The generalized linear model (GLIM) framework extends these ideas beyond the Gaussian,
Bernoulli and multinomial settings to the more general exponential family. A GLIM makes three
assumptions regarding the form of the conditional probability distribution p(y | z):

e The observed input z is assumed to enter into the model via a linear combination ¢ = 67z,

e The conditional mean p is represented as a function f(&) of the linear combination &, where
f is known as the response function,
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0

E —u — 1
/

Figure 8.3: A diagram summarizing the relationships between the variables in a GLIM model.

X

e The observed output y is assumed to be characterized by an exponential family distribution
with conditional mean .

These assumptions are summarized diagrammatically in Figure 8.3. Note that the diagram includes
the mapping from p to 7, which we denote as n = 9(u). This mapping allows us to use the canonical
parameterization to represent the exponential family distribution for Y.

Within the GLIM framework, it is convenient to work with a slight variation on the exponential
family theme. In particular, in the GLIM framework we assume that the conditional distribution
of Y takes the following form:

T, _
p(z |7, 8) = h(z, $) exp {%f‘")} , (8.72)

where we have augmented the representation in Eq. (8.1) to include an explicit scale parameter
¢. Many exponential family distributions, including the Gaussian and the gamma, are naturally
expressed in this form. In particular, we can write the Gaussian distribution as follows:

palmo?) = e sl (8.73)

2o 202

_ (ﬁewp{—%}) exp{'ux;ifﬂ}. (8.74)

As we have seen, we can equivalently bundle the parameters 4 and o into a single parameter vector,
and express the Gaussian as a two-parameter exponential family distribution. The scale-parameter
form is, however, often more natural. Note, moreover, that although the Gaussian yields a two-
parameter exponential family when we bundle the canonical parameter and the scale parameter,
in general we do not require that p(z |7, ¢) is expressible as a two-parameter exponential family.
This gives some useful flexibility.

Note also that for the purposes of GLIM modeling we drop the 7'(-) function in the exponential
family representation. Thus we focus on distributions for which the observable Y is itself a sufficient
statistic.

There are two principal choice points in the specification of a GLIM: (1) the choice of exponential
family distribution, and (2) the choice of the response function f(-).
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The choice of exponential family distribution is generally rather strongly constrained by the
nature of the data Y. Thus, class labels are naturally represented by Bernoulli or multinomial dis-
tributions, counts by the Poisson distribution, intervals by the exponential or gamma distributions,
etc.

This leaves us with the choice of the response function as the principal degree of freedom in the
specification of a GLIM. There are constraints that we generally want to impose on this function,
reflecting constraints on the conditional expectation. For example, in the case of the Bernoulli and
multinomial distributions, the conditional expectation must lie between 0 and 1, and this suggests
that we should choose a response function whose range is (0, 1). Similarly, for a gamma distribution,
the random variable is nonnegative, and we should presumably choose a response function whose
range is (0,00). Such constraints only give rough guidance, however, and in general for any given
distribution there are many possible choices of response function. There is, however, a particular
response function—the canonical response function—that is uniquely associated with a given ex-
ponential family distribution and has some appealing mathematical properties. In particular, if we
assume that & = 7, or equivalently that f(-) = %~!(-), we obtain the canonical response function.
Note that the function v(-) is determined once we have chosen a particular exponential family
density. Thus if we decide to use the canonical response function the choice of the exponential
family density completely determines the GLIM.

We will explore some of the properties of the canonical response function in the remainder of
this chapter. It should be emphasized, however, that the canonical response function is by no
means the universally best choice for all problems. Indeed, as we have already seen in the case
of the classification models, different choices of response function can be appropriate in different
situations, reflecting different underlying assumptions about the way that the data are generated.
We might view the canonical response function as a reasonable default.

The first point to note about the canonical response function is that it automatically passes a
sanity check with regards to the constraints on its range. That is, the modeled values y = f(n) are
guaranteed to be possible values of the conditional expectation. To see this, note that:

fm)=4""(n) =d'(n) = E[Y |n. (8.75)

Thus, for any value 7 such that a'(n) exists, we see that f(n) is equal to the conditional mean of
an exponential family distribution in which 7 is the canonical parameter.

Some examples of canonical response functions are provided in the following table; these have
been collected from the examples in Section 8.1 and from the exercises.

8.2.1 Maximum likelihood estimation

In this section we write down the likelihood for generalized linear models and present on-line and
batch methods for maximizing the likelihood. We restrict ourselves to scalar Y in order to simplify
the presentation; the results go through for vector Y with straightforward notational alterations
(see Exercise 77).

Consider an IID data set, D = {(zn,yn);n = 1,..., N}. Taking the logarithm of a product of
N copies of the exponential family distribution in Eq. (8.72), we obtain the following log likelihood
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tb
Model Canonical response function
Gaussian pw=rn
Bernoulli p=1/1+e")
multinomial pi =mif D2, €m
Poisson uw=ce"
gamma u = —77’1

Figure 8.4: The canonical response functions for several exponential family distributions.
for GLIM models:

N
I(6|D) = log (H h(yn) exp{nnyn — A(nn)}) (8.76)

n=1
N

N
= Y logh(yn) + 3 (g — Alna)). (8.77)
n=1

n=1

where 1, = ¥ (tin), pn = f(€n) and &, = 07 zy,.
In the case of the canonical response function, for which 1, = 7'z, the log likelihood simplifies:

N N
e|D) = Z log h(yn) + Z (OTInyn - A(nn)) (8.78)

n=1 n=1

N N N
= Z log h(yn) + 67 Z TnYn — Z A(ny). (8.79)
n=1 n=1 n=1

From this expression we can draw an important conclusion—the sum Zé\f:l TnYn 15 a sufficient
statistic for 6. This sum has a fixed, finite dimension (the dimension of the vector z,), for any
value of N. This has the very practical consequence that we can allocate a fixed amount of
storage for collecting the information needed to estimate 6, whatever the sample size N. This is
an important motivation for considering canonical response functions.

Let us now calculate the gradient of the log likelihood:

N

dl
Vol = d—Vm]n (8.80)
0
N
= ) (gn—d'(mn)) Vo (8.81)
n=1
N
dnn, dpin
= Z(yn - ,Un)du—n@wn (8.82)

1

3
Il
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For the canonical response function, we have 7, = &,, and thus the derivatives cancel, leaving us
with the following simple expression for the log likelihood:

N
Vol = Z(yn — Hn)Zn. (8.83)

n=1

This expression has the appealing feature that the parameter vector 6 and the “error” (y, — un)
are on the same scale.

An on-line algorithm

A general on-line estimation algorithm can be obtained by following the stochastic gradient of
the log likelihood function. Consider first the case of the canonical response function. Given an
estimate () at the ¢th iteration of the algorithm, we obtain:

where usf ) = f(6®WTz,) and where p is a step size.

We have obtained an algorithm that is formally identical to the LMS algorithm. Moreover, the
geometry of the LMS algorithm that we discussed in Chapter 6 carries over to this more general
setting. That is, as in Chapter 6, the on-line algorithm steps in the direction of the input vector
Zn, weighted by the prediction error (y, — usf )). The specific GLIM model makes its appearance
only through the definition of the conditional expectation .

If we do not use the canonical response function, then the gradient also includes the derivatives
of f(-) and 9 (-). These can be viewed as scaling coefficients that alter the step size p, but otherwise
leave the general LMS form intact. Thus we have obtained a result worth remembering—the LMS-
like algorithm in Eq. (8.84) is the generic stochastic gradient algorithm for models throughout the
GLIM family.

A batch algorithm

In our discussion of logistic regression (Section 7.3.1) we introduced the iteratively reweighted least
squares (IRLS) algorithm—a Newton-Raphson algorithm for batch estimation of parameters. The
algorithm goes through with essentially no change to the general GLIM setting. For completeness
we present the algorithm and its derivation here.

We will assume the canonical response function, and indicate the changes that are needed to
accommodate noncanonical response functions at the end of the section.

We begin by writing the gradient in vector notation:

1 1
Vol = — Z(yn — Pn)Tn = _XT(y — 1), (8.85)

$ 2 $
where X is the design matrix whose rows are the vector x, v is defined as the N x 1 vector whose
components are the values y,, and similarly y is the N x 1 vector whose components are the values

fin-
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Taking a second derivative, we calculate the Hessian matrix:

1 dpin T
H = —— ——Inx 8.86
¢zn:d77n nen ( )
1
= —gXTWX, (8.87)

where we have defined the diagonal weight matrix:

dp din M}

) ey 8.88
dny’ dno dnn (8.88)

w2 dia,g{
where dpuy,/dn, can be computed by calculating the second derivative of A(7ny,).

Note that the weights depend on the parameter vector 8, and thus the weight matrix W depends
on . We use the notation W) to denote the weight matrix at the tth iteration of the algorithm.
Similarly, we use the notation u() to denote the value of x at the #th iteration.

The Newton-Raphson algorithm is obtained by multiplying the gradient by the inverse Hessian
matrix and subtracting the result from the current parameter vector:

o) = g 4 (XTI X) X7 (y — u) (8.89)
XTWOX) " [XTWO X0 + XT(y — )] (8.90)
= (XTwOx) 1 xTw® 0, (8.91)

where we define:
29 =+ WOy — ). (8.92)

The algorithm in Eq. (8.91) is the IRLS algorithm.

If we extend the derivation to handle noncanonical response functions, we find that the Hessian
matrix has another term (see Exercise ??). Including this term yields the Newton-Raphson algo-
rithm for noncanonical response functions. There is, however, an alternative approach. If we use
the ezpected Hessian in place of the Hessian in the Newton-Raphson update formula, we obtain an
alternative algorithm known as the Fisher scoring method.! This algorithm is a simplification in
the case of noncanonical response functions—the extra term that appears in the Hessian contains
the factor (y — p), and this term therefore vanishes when we take expectations (see Exercise 77).
Thus, the Fisher scoring method takes the form shown in Eq. (8.91) in all cases. It is generally the
preferred way to implement the IRLS algorithm.

8.3 Historical remarks and bibliography

!Note that the expectation of the Hessian matrix is the Fisher information matrix.



