An Introduction to Probabilistic Graphical Models

Michael I. Jordan
Unwversity of California, Berkeley

June 30, 2003

Chapter 6

Linear Regression and the LMS
algorithm

In the following chapters we discuss elementary building blocks for graphical models. We begin
with the simple case of a single continuous-valued node whose mean is a linear function of the
values of its parents. The parents can be discrete or continuous.

In specifying the linear regression model in Chapter 5, we made several assumptions in addition
to the linearity assumption, in particular the assumption of IID sampling and the assumption of
a Gaussian distribution for the variation around the conditional mean. These latter assumptions
yielded a fully specified probabilistic model, enabling us to define a likelihood and thereby invoke
frequentist or Bayesian statistical methods to estimate parameters. It might be useful, however,
to step momentarily outside of the probabilistic framework and ask why we consider a parameter
estimation problem to be well posed once we have defined a “fully specified probabilistic model.” In
the current chapter, we address this foundational issue in a rather concrete way, taking advantage
of the simplicity of the linear model to bring to the fore a different set of intuitions about parame-
ter estimation. We begin by making the linearity assumption, but then let geometric rather than
probabilistic intuitions be our guide. In particular, we view each data point as imposing a linear
constraint on the parameters and treat parameter estimation as a (deterministic) constraint satis-
faction problem. We focus on obtaining algorithms that solve this constraint satisfaction problem,
exploiting the geometric framework to analyze the convergence of these algorithms.

The emphasis on constraint satisfaction algorithms in the current chapter has the advantage of
focusing attention on some computational issues that are important in practice and were glossed
over in our purely statistical discussion in Chapter 5. In particular, we will introduce the distinc-
tion between “batch” and “on-line” algorithms, a distinction which is of importance in real-time
applications of statistical modeling and in situations involving large data sets.

At the end of the chapter, we return to the probabilistic perspective, showing that there is a
natural correspondence between the (Euclidean) geometry underlying the constraint satisfaction
formulation and the statistical assumptions alluded to above. Thus, we can view the excursion into
geometry as providing support for the statistical perspective in Chapter 5; thus encouraged, we will
be less bashful about bringing probabilistic machinery to bear at the outset in future chapters. At

4 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHM

the same time, we will continue to seek external support for probabilistic assumptions, particularly
when they shed light on computational concerns.

6.1 Batch and on-line algorithms

Let us consider in some more detail how data points may be presented to the learner. We wish to
distinguish two basic situations—the setting of “batch” presentation, in which data are available as
a block, and the “on-line” setting in which data arrive sequentially. Both settings arise naturally
in practice: In many problems it is necessary to respond in real time, and on-line methods are
dictated; in other situations our only interest is in a final answer—the best answer that we can
obtain given a certain data-gathering budget—and in such cases batch methods are natural.

On the other hand, we are often free to take either the batch or the on-line point of view on a
learning problem—a sequential data stream can be stored for subsequent analysis as a block, and
a block of data can be accessed sequentially. Moreover, a theoretical understanding of algorithms
for parameter estimation is enhanced by approaching the problem from both points of view. We
will see that the on-line point of view yields simple, intuitive algorithms, but a full analytical
understand of on-line algorithms can be difficult, and we therefore turn to a related batch analysis
to enhance understanding. On the other hand, batch methods are often usefully understood by
taking an on-line point of view—in particular, large-scale batch problems generally require iterative
algorithms that sweep repeatedly through the data. These sweeps can often be usefully analyzed
as on-line algorithms.

A great deal of insight can be obtained by considering the elemental problem of updating the
parameters of a linear model based on the presentation of a single data point. Let us begin with
a discussion of the geometry underlying this problem, and show how simple geometric intuition
leads us to an on-line algorithm known as the LMS algorithm. The acronym “LMS” refers to “least
mean squares,” which, as we shall see, reflects the fact that the algorithm can be viewed as an
optimization or constraint satisfaction procedure.

6.2 The LMS algorithm

Let us begin with a minimum of probabilistic pretension and consider the core of the linear model—
the linear dependence of one variable on another. We consider the following question: Suppose that
we have a pair of observed variables x,, and ¥, that we assume are related linearly. What should a
learning algorithm do when presented with a data point consisting of the pair (x,,y,)? We shall be
very naive and see if we can get any clues as to how to design a learning algorithm by considering
the vector space geometry that characterizes the model.

We wish to express ¥, as a linear function of z,:

Yn = 0T~7f'n + €n, (6.1)

where 6 is a parameter vector. Let us view ¢, as a deterministic “error term” whose presence in
Eq. (6.1) is an admission that we don’t necessarily expect to be able to express y, perfectly as a

6.2. THE LMS ALGORITHM 5

e \\\\
\/ AN

\

Figure 6.1: The geometry associated with the LMS algorithm. The figure shows the projection u,
of the parameter vector € on the input vector x,. Also shown is the output value y, as a distance
along the z,, vector. The dashed line is the set of all vectors 6 that have a projection of ¥, and
thus are solutions. The error associated with 6 is the distance (y, — p,). Changing 6 by the vector
(Yn — pn)xy thus yields a solution vector.

linear function of z,,. In particular, let us forgo endowing €, or any of the other terms in Eq. (6.1)
with probability distributions.

Figure 6.1 displays the vectors z,, and 8 as well as the projection of § on z,, whose value we
denote by j,. The projection j, is the inner product 67z, divided by the norm of z,.! Let us
suppose for simplicity (temporarily) that z,, has norm one, so that the inner product 67z, is the
same as the projection u,. Now consider the problem of finding a vector 8 that maps z, to yj,
exactly; that is, a vector such that €, is zero. Clearly we require a vector # whose projection onto
T, is equal to y,, and as the figure shows, there is a line of possible solutions that is orthogonal to
Zn. Any vector along this line projects to the desired value y,. We can view the data point (z,,y,)
as imposing a constraint upon the vector 6 that it lie along this line.

How might we design a learning algorithm to update the current value of the parameter vector

1Recall the fundamental relationship:

0"z,
COSQ = 7o, (6.2)
161l
where « is the angle between 6 and z,. From this relationship we obtain
0Tz,
o = ——. (6.3)
lln |l

for the projection p, = ||6]| cos .

6 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHM

0 such that the new value of # meets the constraint and lies on the solution line? Although there
are an infinity of possible directions that we could move, note that there are two natural directions
available to us: the direction associated with z, and that associated with 6. Let us be very naive
and decide that we should choose one of these two directions as the direction in which to update 6.

Although it is possible to figure out how far to move along the 6 direction so as to intersect
the solution line, it is rather easier to figure out how far to move along the z,, direction, given the
orthogonality of x,, and the solution line. Let us opt for simplicity and choose to follow z,.

Given that x, is a unit vector, and given that the error we incur using the current parameter
vector is the difference (y,, — 087 x,,), it is clear that we should move the parameter vector a distance
(yn — 6%'z,,) in the z,, direction. Thus:

00+ = 9 4 (y, — 0Tz,)z, (6.4)

where () is the estimated value of @ at the ¢th step of the algorithm. This algorithm jumps to the
solution line.

If the vector z,, is not a unit vector, then we need to scale all of our distances by the norm of z,,.
The projection is now 67 z,,/| || and thus we need to choose a parameter vector whose projection
onto Z,, is yn/||zn||. This implies that the error we incur using € is given by (y, — 07z,)/||zn|l,
which is the amount we need to move in the direction of x,. The unit vector in this direction is
given by z,/||z,||; thus we obtain the following learning algorithm:

1

pit+tl) —plt) 4 _ —
[l

(yn - e(t)Txn)xm (65)

which again hops to the solution line in a single step.
More generally, we express our learning algorithm in the following form:

where p is a free parameter known as the “step size.” Our analysis has shown that the choice
p = 1/||zx||? yields an algorithm that hops to the solution line in a single step. It is also easy to
see that if 0 < p < 2/|lz,||?, then on repeated presentations of x,, the algorithm will converge to
the solution line asymptotically.

The algorithm in Equation 6.6 is the LMS algorithm.

6.2.1 Multiple data points

Let us now consider the case in which multiple data points are available. In particular we suppose
that we have a “training set” X = {(zy,yn)}2_,, where N, the number of data points, is at least
as large as k, the dimensionality of the parameter vector.

Let us begin by considering the simplest case, in which NV = k; let us also assume for sim-
plicity that the vectors z,, are linearly independent. Under these conditions, the model given by
Equation 6.1 imposes a set of k linearly independent equations on k& unknowns. This implies the
existence of a unique parameter vector § that achieves ¢, = 0 for each n. Will the LMS algorithm
find this solution?

6.2. THE LMS ALGORITHM 7

9(0)

Figure 6.2: The geometry associated with the LMS algorithm in the case of two input vectors z;
and z9. Associated with each vector is a line of solutions and the intersection of these lines is the
vector 6* that solves the problem for both vectors. We show the path taken by the LMS algorithm
upon repeated presentations of z1 and xs.

Figure 6.2 presents an example for the case of N = 2. As shown in the figure, each of the
directions determined by the vectors z; and z9 is associated with a solution line of vectors @ that
map the given z; to the corresponding y;. The value 6* that maps both vectors z,, to their desired
values lies at the intersection of these two lines. Assuming that the training regime alternates
between the two data points, we see that the LMS algorithm takes a zigzag path, following first the
z1 direction and then the zo direction. It seems clear, and it is in fact true (as we will show), that
there exists a maximum value of the step size for which the algorithm converges to the solution.

If we turn to the case of N > k, we expect to see a qualititatively similar behavior in which LMS
takes a zigzag path through the parameter space. In this case, however, we have an overdetermined
set of equations and the lines that achieve ¢, for the various data points do not meet at a single point
(see Figure 6.3). Given that LMS always moves from the current 6 towards the line of solutions
corresponding to the current data point, we see that we cannot expect the algorithm to move to
a single point and stay put. We do expect, however, that the LMS algorithm should “converge”
towards a small region of the parameter space, given an appropriate choice of the step size. Making
further progress on these issues requires us to characterize more formally the constraint satisfaction

CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHM

\
\
\
\
I Xy
~ \
~
~ \
S \
AN \
~ \
~ \
\\\ \
~ \
AN ,
T Vi
(DN s
\‘ \\\ 7
\ //<\\
\ ~
’
\ // \\\
\}/ \\\
A N
7\ A
/ ~
7 \ S
s \ .X1
’ \ ‘
/ ! o
7 \
il !
\
// \
7 !
7 “
, '
,/
’
’ X3

Figure 6.3: The geometry associated with the LMS algorithm in the case of three input vectors x1,
problem underlying the algorithm.

z2 and 3. Associated with each vector is a line of solutions. In general these lines do not intersect.

6.3 The sum of squares cost function and the normal equations

The approach that we pursue—which dates back to Gauss if not before—is to search for parameter

vectors 6 that yield “small” values of ¢,. We need to characterize what we mean by “small,” and
decide how to combine the errors for different values of n. To make these decisions we again reason

geometrically. We now work in a different geometry, however, namely an N-dimensional vector
space, where N is the number of data points.

Let y denote a column vector with components ¥, and let § denote a column vector with
components ¢, = 67z,. These are vectors in an N-dimensional vector space. We want to express

the relationship between these vectors in a way that reveals more of the geometry behind the linear
model. To do so, let X represent the matrix whose nth row is the row vector z1. We write:
7= X0,

(6.7)
showing that { lies in the column space of the matrix X. Each column of X corresponds to a
particular component of the vector x,, and the set of columns of X can be viewed as spanning a

vector subspace (see Figure 6.4). The vector § lies in this vector subspace. The vector y, on the

6.3. THE SUM OF SQUARES COST FUNCTION AND THE NORMAL EQUATIONS 9

Figure 6.4: A geometric perspective on the linear regression problem for the case of the matrix X
having two columns. Let X1 represent the first column of X and let X represent the second
column. Denote the column space of X as col(X). The approximating vector ¢ lies in this vector
subspace, while the data vector y generally lies outside of this subspace. We wish to find a vector
7 that is the orthogonal projection of y on col(X).

10 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHM

other hand, generally lies outside of this vector subspace, reflecting the fact that in general the
errors €, cannot simultaneously be zero.

Our problem reduces to choosing a vector ¢ in a vector subspace that best represents a vector
y outside of the subspace. A natural solution, from a geometric point of view, is to choose the
orthogonal projection of y onto the subspace. We will solve the problem of finding a vector 8* that
yields this projection in three different ways.

Our first solution appeals directly to the geometry in Figure 6.4. In particular, for § to be
the orthogonal projection of y on the column space of X, the difference vector ¢ = y — § must be
orthogonal to this vector subspace. Thus y — § = y — X60* must be orthogonal to the columns of
X, or, equivalently, orthogonal to the rows of XT. This yields:

XT(y—X0")=0 (6.8)

which implies
XTx0* = XTy. (6.9)

These equations, which characterize an optimizing vector 8*, are referred to as the normal equations.

There is an equivalent characterization of the orthogonal projection in terms of minimal Eu-
clidean length; this characterization leads us to a calculus-based derivation of the normal equations.
In particular, let us choose ¢ such that the error vector ¢ = y — 9 has minimal Euclidean length.
Thus, working (equivalently) with the squared length, we wish to minimize the least squares cost
function J(6):

1 1
JO) 25 =75 (n—0Tan), (6.10)
n=1 n=1

with respect to 6.2
Differentiating J with respect to the ith component, 6*, of the vector 6, we obtain:

N

oJ :

i Z(yn — 0Tzt (6.11)
n=1

where z¢, is the ith component of the vector z,. Collecting these partial derivatives into a vector

we obtain the following gradient:

N
VoJ == (yn — 0" @n) s, (6.12)

n=1

which we must set to zero to obtain conditions on the optimizing solution 6*.

To obtain an explicit solution it is useful to make use of the matrix X and write the gradient as
a single matrix equation. Recalling that X has the vectors z,, on its rows, we can view Eq. (6.12)
as a sum of the rows of X, weighted by the values (y, — 67'z,). Equivalently this sum is the sum

*The factor of 1/2 is included for convenience; it cancels the factor arising from the exponent of 2 when we take
derivatives.

6.3. THE SUM OF SQUARES COST FUNCTION AND THE NORMAL EQUATIONS 11

of the columns of X7. Recalling that the values #z, are the components of the vector § = X6,
we have:

Vol = —XT(y — X0). (6.13)
Finally, setting to zero we obtain:
XT(y - X0%) =0, (6.14)
or equivalently:
XTxo* = xTy, (6.15)

which are the normal equations.
In Appendix XXX, we provide a short review of matrix and vector derivatives, which allows
the reader to go directly from the cost function expressed in vector notation as:

1
JO) = Sy—X0)"(y—X0) (6.16)
1
= E(yTy —2y7 X0+ 67 X7 X0), (6.17)
directly to the gradient:
Vol = —XT(y — X0), (6.18)

from which we again obtain obtain the normal equations by setting to zero.

In most situations of practical interest, the number of data points N is larger than the dimen-
sionality k of the input space and the matrix X has full column rank. If this condition holds, then it
is easy to verify that X7 X is necessarily invertible and thus we can express 8* explicitly as follows:

0* = (XTX)"1xTy. (6.19)

Moreover, if we take a second derivatives of J with respect to # we find that the Hessian matrix of J
is given by X7 X (see Appendix XXX). The assumption that X7 X is invertible implies that X7 X
is positive definite, and thus the critical point that we have found is a minimum. The solution to
the normal equations provides the unique solution to the constraint satisfaction problem.

In Section ?? we discuss the case in which X has less than full column rank, and develop a
regularization method to handle this case.

In the setting of “batch” presentation of data, in which data are available as a block, we can
form the matrix X and the vector y and solve the normal equations. There are two major classes
of methods for solving these equations: direct methods and iterative methods. The former class of
methods, of which Gaussian elimination and QR decomposition are classical examples, converge in
a finite number of steps. Iterative methods, which converge in a limiting sense, are of interest in the
setting of particularly large problems, where direct approaches can be infeasible computationally.

Our next task is to try to understand the link between the two geometries that we have studied—
the k-dimensional geometry of Figure 6.1 and the N-dimensional geometry of Figure 6.4. We also
want to understand the relationship between the normal equations and the LMS algorithm. In the
following section, we forge these links via the derivation of a steepest descent algorithm for solving
the normal equations. This algorithm can be viewed as an example—one of many—of an iterative

12 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHM

method for the batch case. Our goal, however, is not to explore iterative solution methods for
the batch case (indeed there are more sophisticated methods than steepest descent). Rather, we
wish to use the normal equations and their solution via steepest descent as a point of departure for
understanding the on-line case.

6.4 Steepest descent and the LMS algorithm

Following the negative of the gradient in Eq. (6.12) we obtain the following steepest descent algo-
rithm:

N
0D =00 + 0" (g — 09 z)z,, (6.20)
n=1

where () is the parameter vector at the ¢th step of the iteration and where p is the step size. The
algorithm is initialized at an arbitrary vector #(°) and iterates until a convergence criterion is met.

The steepest descent algorithm involves a sum over all N input vectors, thus the algorithm is
a batch algorithm. Note that this aspect of the algorithm can render it rather inefficient, and this
inefficiency motivates us to consider on-line approaches. In particular, if N is large, say in the
millions, then the algorithm can spend an inordinate amount of time passing through the training
set in order to compute the gradient, at which point it takes a step in the parameter space. Given
that one of the motivations for studying iterative algorithms is to be able to handle very large
problems, this feature of steepest descent is disconcerting. Note moreover that if the data set is
redundant—a common occurrence with large data sets—then it might not be necessary to sum
all of the N terms in Eq. (6.20) to obtain an accurate estimate of the direction of the gradient
(the magnitude of the gradient is irrelevant because it is being scaled by a constant p that is
under our control). In such situations, algorithms that take a sum over a subset of the data—a
“mini-batch”—can often be significantly more efficient than the full batch algorithm. Indeed, in
the limiting case we can view a single term, —(y, — 67 x,)z,, as providing a rough estimate of the
direction of the gradient. It may be advantageous to go ahead and follow this rough estimate and
make progress in the parameter space rather than waiting to obtain a better estimate. This logic
leads to the following algorithm, which adjusts the parameter vector according to the estimated
gradient based on a single data point:

0D = 0® 4 p(y, — 6O z,)z,,. (6.21)

This is of course the LMS algorithm. We see that the LMS algorithm can be viewed as an approx-
imation to the steepest descent algorithm, where the approximation involves replacing the sum
obtained in the batch algorithm with a single term. Such an approximation is referred to as a
“stochastic gradient” algorithm, where “stochastic” refers to an assumption that the choice of data
point (z,,y,) is made according to a stochastic process.

Let us emphasize that although LMS can be viewed as an approximation to steepest descent,
it is often a much superior algorithm. Because it requires significantly less work per parameter
update, it can converge significantly faster than steepest descent.

6.4. STEEPEST DESCENT AND THE LMS ALGORITHM 13

We are now in a position to learn something more about the convergence of the LMS algorithm.
From the normal equations we have a characterization of the vector toward which we expect the LMS
algorithm to tend, and from the steepest descent equations we have the possibility of characterizing
the path that LMS will be expected to follow on average (under an appropriate stochastic analysis).
In particular we may hope to learn something about the maximum possible value of p.

We present two analyses—one algebraic and one geometric—that yield the sought-after results.
Both analyses involve analyzing the shape of the quadratic cost function J in the neigborhood of
its minimum.

6.4.1 An algebraic convergence analysis?

One way to understand the convergence of the steepest descent algorithm in Eq. (6.20) is to unfold
the recursion and solve the resulting equation.

In particular, letting 0 represent the parameter vector at the tth iteration of the algorithm,
we have:

oty = g 4, Z _ 0T, (6.22)
=004 53 g 93 (a0 (623
n=1 n=1
= 00 4 pXTy - pXTXH(t) (6.24)
= (I-pXTX)0% + pxTy. (6.25)

Expanding the recursion, we have:

) = (I—pXTX)0® + pxTy (6.26)
= (I-pXTX) [(T - pXTX)6"™V + pXTy| + pXTy (6.27)
t
_ T y\t+1p(0) T y\iyT
= (I-pXTX)"00) 4 p> (T — pXTX)'XTy. (6.28)
=0

We now let ¢ go to infinity. Let us assume for now that the first term goes to zero as ¢ goes to
infinity—we will then return to this term and derive a condition that ensures that it goes to zero.
Thus we have:

0 = p> (I-pX"X)' X"y (6.29)
=0

= p(pXTX)"'XTy (6.30)

(XTX) 1XTy, (6.31)

3The material in this section is optional; it will not be needed in later chapters.

14 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHM

which are the normal equations. We have thus shown that the steepest descent algorithm converges
to the minimum of the cost function, under the assumption that the first term in Eq. (6.28) converges
to zero.

Let us now consider the matrix power (I — pXT X)"*! as t — oco. In general, to show that
a matrix power converges to zero we need to show that its largest eigenvalue is less than one in
absolute value. Now it is easy to verify that if A is an eigenvalue of (I — B) for a matrix B, then
1 — X is an eigenvalue of B. Thus the absolute values of the eigenvalues of (I — B) are less than
one if any only if the absolute values of the eigenvalues of B are between zero and two. Thus we
have the condition:

0 < Amax[pXTX] < 2, (6.32)
where Apax represents the maximum eigenvalue of a matrix, or equivalently:
0 < p < 2/Amax[XTX]. (6.33)

This is the condition for convergence; the step size p can be no larger than two divided by the
maximum eigenvalue of X7 X.

6.4.2 A geometric convergence analysis?

To get a better understanding of the convergence condition that we have just derived, let us rederive
it from a geometric point of view.

Our cost function is a quadratic function in the components #* and can be plotted as a set of
elliptical contours in the parameter space. In particular, for the example shown earlier in Figure 6.2,
the corresponding contours are shown in Figure 6.5. Let us take a moment to understand how to
obtain these contours.

We know that the minimum of the cost function is achieved by the vector 8* that solves the
normal equations. Qur analysis will be simplified if we choose this optimizing point as the origin
of our coordinate system. We choose new coordinates ¢ = 6 — 8* and express the cost function in
these new coordinates:

(yn - GT-'En)2

NE

J(p) =

S
Il
—

(y— X0)T(y — X0)
(y—X(¢+6))"(y — X(¢+6%))

= 3 'y — 0" Xy + ¢" XTX¢),

RN =N = DN

where in passing from the third line to the fourth line we have expanded the quadratic expression
and used the fact that 6* solves the normal equations. In the new coordinates we see that the cost
function is expressed simply as:

T(¢)=C+ 3¢ X" X4, (634

4The material in this section is optional; it will not be needed in later chapters.

6.4. STEEPEST DESCENT AND THE LMS ALGORITHM 15

Figure 6.5: The contours of the cost function J(#) for the example in Figure 6.2.

where C = yTy — *T XTy is a constant.

We now rotate the coordinate system so that the axes point along the major and minor axes of
the ellipse. This is achieved by making use of the eigenvectors of X7 X. In particular, let A be the
matrix whose column vectors are the eigenvectors of X7 X. We have:

XTX = ANAT, (6.35)

where A is a diagonal matrix whose elements are the eigenvalues \; of X7 X. Note also that the
fact that X7 X is a symmetric matrix implies that A is orthogonal. Thus we have:

ATXTXA = A. (6.36)

Now choose new coordinates 1) = A”'¢. We obtain:

TW) = O+ (A9 XTX(Ay) (6.37)
= C+ %¢TATXTXA1/J (6.38)
= C+ 9"y, (6.39)

This final equation is simply the weighted sum of squares of the components of 1, with weights
given by the eigenvalues \;. Setting J (1) equal to a constant yields the equation of an ellipsoid.

Let us now express the steepest descent equation in the new coordinates. We write the equation
in matrix notation (cf. Eq. (6.24)) as:

oD = g®) 4 p(xTy — xTx0®) (6.40)

16 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHM

Given that the € coordinates and the 1 coordinates are related via 8 = Ay + 6%, we obtain:
A = Ay — p(XT X Ap®)), (6.41)

where we have used the fact that 8* solves the normal equations. Premultiplying both sides of this
equation by AT (recalling that A is orthogonal), we obtain:

P = gl — p(ATXTX A1) (6.42)
»® — pAyp®. (6.43)
This equation represents a decoupled set of equations in the components of the v vector:
P = (1 - paa)y', (6.44)
which converges if (1 — pA;) is less than one in absolute value. That is, we require:
11— pAill <1, (6.45)
which is equivalent to:
0<p<2/A. (6.46)

Given that this must be true for all \; we have recovered the same condition for convergence as
obtained in the previous section (Eq. (6.33)).

In the decoupled coordinate system, we see that convergence condition amounts to the condition
that if the algorithm hops from one side of an axis of the ellipsoid to the other, it must end up no
further away from the axis than when it started. The axis associated with the maximum eigenvalue
puts the strongest constraint on the step size.

6.4.3 LMS and stochastic approximation

It is beyond the scope of the book to provide a detailed consideration of the sense in which the
LMS algorithm (and related “on-line” algorithms) converges to a solution, and we will content
ourselves with providing pointers to the literature on stochastic approximation where such issues
are addressed.® To get some sense of the issues involved, however, note that the path taken by the
LMS algorithm in the parameter space depends on the particular way in which the training set is
ordered. There are many kinds of ordering that may arise practice; typical examples include: (1)
the algorithm passes through the training set in a fixed order, (2) varying orderings are used for
each pass through the training set, and (3) data points are selected randomly with replacement
from the training set. Moreover, (4) in other cases there is no “training set”; rather, the data
points arrive as a potentially infinite stream. Another set of issues arises when one considers the
meaning of “convergence.” If the step size p remains fixed then the algorithm “converges” only in
a stochastic sense, and there are several kinds of stochastic convergence that one can consider. It
is also possible to consider variants of LMS in which the step size decreases to zero; under certain
conditions (certain rates of decrease of the step size) the algorithm can be shown to converge to
a point. As should be clear, a full analysis of LMS is a subtle business, and fairly sophisticated
mathematical tools are required to do justice to the problem.

®See the section on “Historical remarks and bibliography” at the end of the chapter.

6.5. WEIGHTED LEAST SQUARES 17

6.5 Weighted least squares

In later chapters we will need to solve a generalization of least squares, in which each data point
is accompanied by a “weight” w,. Intuitively, large weights correspond to data points that are
“important,” and small weights correspond to data points that are “unimportant.” Let us set up
this weighted least squares problem and display the corresponding normal equations.

Consider a set of weights w, for each n = 1,..., N. Let us incorporate these weights into the

cost function as follows: v

J(0) = 2> wnlyn — 07 z0)?, (6.47)

We can write this cost function in matrix form by defining a diagonal matrix W £ diag(w1, we, .. ., wy)
and writing:
1
J(0) = 5y - X0)"W(y — X0), (6.48)

where we see that the weight matrix W can be viewed as defining a new metric with which to
measure errors.
To obtain a solution 8*, we take the gradient of Eq. (6.48):

VoJ = - XTWy — XTWX6. (6.49)

and set to zero:
XTwxe* = XTwy, (6.50)

These equations are the normal equations for weighted least squares.

6.6 Probabilistic interpretation

Thus far we have avoided making any probabilistic interpretation of the linear model and the
least squares cost function. Let us now return to the statistical framework of linear regression in
Chapter 5 and endow the terms in the linear model with probability distributions.

In Chapter 5 we augmented the linearity assumption with the assumption that the errors ¢,
are Gaussian random variables having zero mean and variance o?. This assumption implies that
the conditional probability of y, given z, is Gaussian with mean 67z,,:

exp {— L g — oTan} . (6.51)

P(Yn|Tn,0) = 202

2702

We assumed moreover that the ¥, are independent and identically distributed, conditional on z,,.
Thus the joint conditional distribution of the data gy is obtained by taking the product of the
individual conditional probabilities:

1 1 &
p(ylz,8) = W exp {_ﬁ Z(yn - OT:En)Q} . (6.52)

18 CHAPTER 6. LINEAR REGRESSION AND THE LMS ALGORITHM

Taking the logarithm and dropping the terms that do not depend on the parameter 8, we obtain
the following expression for the log likelihood:

N
1
1(0;z,y) =52 Z —01z,)% (6.53)

This log likelihood is equivalent to the least-squares cost function J(#) in Eq. (6.10). In particular,
maximizing the log likelihood with respect to 8 is equivalent to minimizing the least-squares cost
function.

What we have shown is that the assumptions of a Gaussian distribution and IID sampling
imply—within a maximum likelihood framework—the minimization of the least-squares cost func-
tion. Moreover, the normal equations characterize the maximum likelihood solution to the linear
regression problem.

We can view this result as providing support for the likelihood-based approach to parameter
estimation. In particular, in imposing probabilistic assumptions on the linear model so as to obtain
a likelihood function, we have imposed neither more nor less constraint on the problem than is
required to obtain a well-posed deterministic problem in the constraint satisfaction formulation.
In particular, in the latter formulation, we need to decide how to measure the magnitudes of
the errors and how to combine these magnitudes. These decisions have correspondences in the
probabilistic formulation, in particular the Gaussian assumption effectively determines the metric
by which we measure the errors, and the IID assumption determines the way in which the errors
are combined. Both formulations are useful. In particular the constraint satisfaction perspective
has helped us to understand that the linear, IID, and Gaussian assumptions comprise a natural
family, essentially reflecting a Euclidean geometry. The probabilistic perspective provides additional
insight; in particular, a Gaussian distribution for the errors can be justified via the central limit
theorem if it is the case that the error terms €, are decomposable into sums of many small random
terms.

It is also worth noting that in the frequentist approach to estimation we are not restricted to
likelihood-based methods. In particular, we can view the least-squares cost function as providing
an “estimator” that can be evaluated with the usual frequentist criteria. That is, we can define the
least-squares estimator of a parameter as a value that minimizes the least-squares cost function,
whether or not the underlying probability model involves a Gaussian assumption. If the underlying
model is Gaussian then the least-squares approach and maximum likelihood coincide, but in general
they can be viewed as competitors. The fact that least-squares estimates involve the solutions of
systems of linear equations is a computational argument in their favor.

Although the geometric perspective provides significant insight in the case of the linear model,
the probabilistic, likelihood-based perspective becomes increasingly powerful when we consider
various generalizations of the linear model. For example, discrete variables are naturally handled by
likelihood-based methods, as are hybrid models that involve combinations of discrete and continuous
variables. Moreover, latent variables allow us to build more complex error models and Markov
chains allow us to move beyond the IID assumption. Likelihood-based methods will be our focus
throughout the remainder of the book.

6.7. RIDGE REGRESSION 19

9(0) \

Figure 6.6: The geometry associated with the LMS algorithm in the case of two redundant input
vectors z1 and z3. The dashed lines represent lines of solutions corresponding to each of the input
vectors. There is a line of least-squares solutions that lies halfway between these two lines. The
component of the initial parameter vector (¥ that is orthogonal to these lines does not vanish as
the algorithm iterates.

6.7 Ridge regression
6.8 Sequential Bayesian methods

6.9 Historical remarks and bibliography

