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Reading: Sampling chapter. Notes on mean field algorithm.

Problem 7.1

Gibbs sampling and mean field: Consider the Ising model with binary vari-
ables Xs ∈ {−1, 1}, and a factorization of the form

p(x; θ) ∝ exp
{∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt
}
. (1)

To make the problem symmetric, assume a 2-D grid with toroidal (donut-
like) boundary conditions, as illustrated in Figure 2(a).

(a) Derive the Gibbs sampling updates for this model. Implement the
algorithm for θst = 0.25 for all edges, and θs = (−1)s for all s ∈
{1, . . . , 49} (using the node ordering in Figure 2(a)). Run a burn-in
period of 1000 iterations (where one iteration amounts to updating
each node once). For each of 5000 subsequent iterations, collect a
sample vector, and use the 5000 samples to formMonte Carlo estimates
µ̂s of the moments E[Xs] at each node. Output a 7× 7 matrix of the
estimated moments. Repeating this same experiment a few times will
provide an idea of the variability in your estimate. Hand in print-outs
of your code, as well as your results.

(b) Derive the naive mean field updates (based on a fully factorized ap-
proximation), and implement them for the same model. Compute the
average ℓ1 distance 1

49

∑49
i=1 |τs− µ̂s| between the mean field estimated

moments τs, and the Gibbs estimates µ̂s. Hand in print-outs of your
code, as well as your results.

Problem 7.2

Neighborhood regression for Gaussian graphical models: In this problem,
we explore properties of jointly Gaussian random vectors that underlie the
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Figure 1: (a) A two-dimensional grid graph with toroidal boundary con-
ditions. (b) Break-down of the sum-product algorithm on the Ising model
on the toroidal grid. For all γ < γ∗, the sum-product algorithm computes
the correct symmetric marginals. Beyond this point, it outputs increasingly
inaccurate answers.

success of the neighborhood-based Lasso approach to estimating Gaussian
graphical models (as discussed in lecture).

Let (X1, X2, . . . , Xp) be a zero-mean jointly Gaussian random vector
with positive definite covariance matrix Σ. Letting T = {2, 3, . . . , p}, con-
sider the conditioned random variable Z = (X1 | XT ).

(a) Show that there is a vector θ ∈ R
p−1 such that Z = 〈θ, XT 〉 + W

where W is a zero-mean Gaussian variable independent of XT . Hint:

Consider the best linear predictor of X1 given XT .

(b) Show that θ = (ΣTT )
−1ΣT1, where ΣT1 ∈ R

p−1 is the vector of covari-
ances between X1 and XT .

(c) Letting N(1) = {j ∈ V |(1, j) ∈ E} be the neighborhood set of node
i, show that θj = 0 if and only if j /∈ N(1). Hint: The following
elementary fact could be useful: let A be an invertible matrix, given
in the block-partitioned form

A =

[
A11 A12

A21 A22

]
.

Then letting B = A−1, we have B12 = A−1
11 A12

[
A21A

−1
11 A12 −A22

]
−1

.
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Problem 7.3

Sum-product on graphs with cycles In many real-world applications, the
sum-product algorithm is applied to graphs with cycles. Unlike the case
of trees, the sum-product updates are no longer guaranteed to converge, or
to compute the correct marginal distributions. Indeed, the results can be
very surprising! As an illustration of this phenomenon, consider the Ising
model (1) on the toroidal grid (see Figure 2(a)), with θs = 0 for all s ∈ V ,
and θst = γ for all edges (s, t); call this distribution p(x; γ), since it is
parameterized by γ ∈ R.

(a) Show that the single node marginal distributions are uniform for all
choices of γ (that is, P[Xs = 1; γ] = P[Xs = −1; γ] = 0.5).

(b) Figure 2(b) shows empirically that there is some critical threshold
γ∗ > 0 such that the sum-product algorithm, when applied to the
distribution p(x; γ), converges to uniform marginal distributions for
all γ ∈ [0, γ∗), but produces inaccurate answers for larger γ. Using
the analytical form of the sum-product updates, prove that there is
some γ∗ that sum-product converges from any initial condition, and
computes the correct uniform marginals for all γ ∈ [0, γ∗). Hint: Since
each node in the model looks like every other node, it is sufficient
to consider a special case of the message-passing updates, in which
the message Mt→s along each edge t → s is the same as every other
message.

3


