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Problem 6.1

Factor analysis: Consider the factor analysis model

Y = µ+ ΛX +W

where X ∼ N(0, I) is a d-dimensional Gaussian; µ ∈ R
n is a mean vector;

W ∼ N(0, σ2I) is an n-dimensional Gaussian; and Λ ∈ R
n×d is the factor

matrix. From the course website, you can download the ASCII format files
Y.dat and Lambda.dat, containing an observation vector y ∈ R

121 and a
121× 5 factor matrix Λ (i.e., d = 5 and n = 121).

(a) Assuming that µ = 0 and σ2 = 0.25, compute the conditional mean
vector E[X|y] and covariance matrix cov[X|y]. What does this esti-
mate tell you about which factors were most heavily involved in gen-
erating y?

(b) What is the relation between E[X|y] and the MAP estimate of X given
Y = y?

(c) Optional: How do you think that the MAP estimate of X given Y = y
would change if X had i.i.d. Laplacian entries (e.g., with density
p(xi) ∝ exp(−|xi|))?

Problem 6.2

Model selection for curve-fitting Suppose that we are interested in fitting
curves to noisy data; in particular, consider the polynomial regression model
linking the response variable y ∈ R to the covariate x ∈ R via

y =
D∑

k=1

βkx
k + w, (1)
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where w ∼ N(0, 1) is Gaussian noise. One model selection problem is that of
choosing the appropriate degree D of this polynomial fit, which we explore
in this problem.

(a) The course website has two ASCII files Ymodel.dat and Xmodel.dat,
containing samples {xi, yi}

n
i=1 with n = 100. For d = 1, 2, . . . , 10,

fit the model (1) to the data by minimizing the least squares loss

L(β) = 1
2n

∑n
i=1

{
yi −

∑d
k=1 βk(xi)

k
}2

. For which choice of d is this
cost function smallest? On the same figure, plot the original data and
the models fitted to the data for d = 1, 2, 3, 4.

(b) Show that the AIC method, when applied to this problem, reduces to
choosing the degree d̂ that minimizes L(β̂[d]) + d/n, where β̂[d] is the
fitted set of parameters of the polynomial with degree d. Implement
this model selection criterion for this data set, where d ranges over
{1, 2, . . . , 10}. What d̂ is chosen by the procedure?

(c) Given the model β̂ = β̂[d̂] chosen in part (b) and a new observed
covariate x, one can generate a predicted response ŷ as

ŷ =
d̂∑

k=1

β̂kx
k.

The course website also contains two ASCII files Ynew.dat and Xnew.dat
with m = 500 new samples. Using the samples in Xnew.dat, generate
predictions ŷi, i = 1, . . . ,m, and then compute the prediction error∑m

i=1(ŷi − yi)
2.

(d) Repeat part (c) for using the full model fit β̂[10] with all D = 10
parameters. Is the prediction error of the full model higher/lower
than your fitted model?

Problem 6.3

Accept/reject sampling. Suppose that we want to sample from a random
variable X with density

pX(x) =

{
cx(1− x) for x ∈ [0, 1]

0 otherwise.
,

where c > 0 is an appropriate constant.
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(a) Suppose that you have a block-box routine to draw samples Y from a
uniform distribution on [0, 1]. Describe how to perform accept-reject
sampling to generate samples X ∼ pX .

(b) Suppose that you standardize your sampler so that, conditioned on
the event Y = 1/2, it accepts with probability 1/2. Implement this
version of the sampler, and plot the histogram of n = 10000 randomly
drawn samples. Hand in this histogram, and your code. (Be sure to
document your code, explaining what you are doing.)

(c) Let T denote the random number of uniform samples that must be
drawn in order for the algorithm to output one sample. Compute E[T ],
and compare this theoretical mean to the empirical mean over your
n = 10000 samples. (Note: Your code will need to record the number
of uniform samples that were generated for each of the n = 10000
samples in (b)).

Problem 6.4

Cautionary tale about importance sampling: Suppose that we wish to esti-
mate the normalizing constant Z(p) of a Gaussian density p(·) ∼ N (0, σ2

p).
Given i.i.d. samples y1, . . . , yn from a standard normal q(·) ∼ N (0, 1), con-
sider the importance sampling estimate

Ẑ =
1

n

n∑

i=1

p∗(yi)

q(yi)
where p∗(y) = exp(−

1

2σ2
p

y2).

(a) Show that Ẑ is an unbiased estimator of Zp.

(b) Letting f(y) = p∗(y)/q(y), show that var(Ẑ) = var(f(Y ))
n

whenever
var(f(Y )) is finite. For what values of σ2

p is this variance actually
finite?
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