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Problem 3.1

Suppose that three discrete random variables (X,Y, Z) have a joint PMF
such that p(x, y, z) > 0 for all (x, y, z). Show that if X ⊥ Y | Z and
X ⊥ Z | Y , then we haveX ⊥ (Y, Z). Is this still true if we allow p(x, y, z) = 0
for some (x, y, z)?

Problem 3.2

For each of the following statements, either give a proof of its correctness,
or a counterexample to show incorrectness.

(a) If X1 ⊥ X2, then X1 ⊥ X2 | X3.

(b) If X1 ⊥ X2 | X4 and X1 ⊥ X3 | X4, then X1 ⊥ (X2, X3) | X4.

(c) If X1 ⊥ (X2, X3) | X4, then X1 ⊥ X2 | X4.

Problem 3.3

Graphs and independence relations: For i = 1, 2, 3, let Xi be an indicator
variable for the event that a coin toss comes up heads (which occurs with
probability q). Supposing that that the Xi are independent, define Z4 =
X1 ⊕ X2 and Z5 = X2 ⊕ X3 where ⊕ denotes addition in modulo two
arithmetic.

(a) Compute the conditional distributions of (X2, X3) given Z5 = 0 and
Z5 = 1 respectively.

(b) Draw a directed graphical model (the graph and conditional prob-
ability tables) for these five random variables. What independence
relations does the graph imply?

(c) Draw an undirected graphical model (the graph and compatibility
functions) for these five variables. What independence relations does
it imply?
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(d) Under what conditions on q do we have Z5 ⊥ X3 and Z4 ⊥ X1? Are
either of these marginal independence assertions implied by the graphs
in (b) or (c)?

Problem 3.4

Consider a sequence of random variables (X1, . . . , Xd) generated according
to the following procedure:

(i) Sample X1 ∼ N(0, 1).

(ii) Given some a ∈ (−1, 1), for t = 1, . . . , d − 1, set Xt+1 = aXt +√
1− a2 Wt, where the {Wt}d−1

t=1
are independent N(0, 1) variables,

with Wt chosen independently of Xt.

(a) Compute the covariance matrix Σ ∈ R
d×d of the random vectorX ∈ R

d.

(b) Show that the inverse covariance matrix Σ−1 is always tridiagonal,
meaning that it is non-zero only on its diagonal and on the two di-
agonals above and below the main diagonal. (I.e., (Σ−1)ij = 0 for all
|i− j| > 1.)

(Hint: You may want to simulate this numerically just to confirm the in-
tuition. In proving the result, the Hammersley-Clifford theorem could be
helpful.)

Problem 3.5

Consider the directed graph shown in Figure 1(a). For each of the following
conditional independence statements, verify whether or not they hold. In
each case, be explicit using the Bayes ball algorithm, indicating how the ball
gets through, or how it is blocked for each possible path.

(a) X2 ⊥ X8 | {X3, X4, X5}.

(b) X8 ⊥ X9 | {X3, X4, X5}.

(c) X7 ⊥ X10 | {X3, X4, X5}.

Problem 3.6

Undirected graphs and elimination: Consider the undirected graph in Fig-
ure 1(b): it is a 3× 3 grid or lattice graph.
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Figure 1: (a) A directed graph. (b) An undirected graphical model: a 3× 3
grid, frequently used in spatial statistics and image processing.

(a) Sketch the sequence of graphs obtained by running the algorithm
Graph-eliminate:

(i) Following the ordering {5, 4, 8, 6, 2, 9, 3, 7, 1}?
(ii) Following the ordering {1, 7, 3, 9, 2, 4, 6, 8, 5}?

What is the largest clique formed by each graph sequence? Which
ordering is preferable?

(b) Using intuition from the previous example (n = 3), give a reasonable
(≪ n2) upper bound on the treewidth of the n× n grid.
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