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Problem 2.1

The course homepage has a data set named lms.dat that contains twenty
rows of three columns of numbers. The first two columns are the components
of an input vector x and the last column is an output y value. (We will
not use a constant term for this problem; thus the input vector and the
parameter vector are both two dimensional.)

(a) Solve the normal equations for these data to find the optimal value of
the parameter vector. (I recommend using MATLAB or R.)

(b) Find the eigenvectors and eigenvalues of the covariance matrix of the
input vectors and plot contours of the cost function L(θ) = ‖y−Xθ‖2

2

in the parameter space. These contours should of course be centered
around the optimal value from part (a).

(c) Initializing the LMS algorithm at θ = 0 plot the path taken in the
parameter space by the algorithm for three different values of the step
size ρ. In particular let ρ equal the inverse of the maximum eigenvalue
of the covariance matrix, one-half of that value, and one-quarter of
that value.

Problem 2.2

The course website contains a data set classification2d.dat of (xi, yi)
pairs, where the xi are 2-dimensional vectors and yi is a binary label.

(a) Plot the data, using 0’s and X’s for the two classes. The plots in the
following parts should be plotted on top of this plot.

(c) Write a program to fit a logistic regression model using stochastic
gradient ascent (or IRLS if you prefer). Plot the line where the logistic
function is equal to 0.5.
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(d) Fit a linear regression to the problem, treating the class labels as real
values 0 and 1. (You can solve the linear regression in any way you’d
like, including solving the normal equations, using the LMS algorithm,
or calling the built-in routines in Matlab or R). Plot the line where
the linear regression function is equal to 0.5.

(e) The data set testing.dat is a separate data set generated from the
same source. Test your fits from the previous parts on these data and
compare the results.

Problem 2.3

The ridge regression estimate is defined as

θ̂ ∈ arg min
θ∈Rd

{
‖y −Xθ‖2

2
+ λn‖θ‖

2

2

}

where λn > 0 is a positive regularization weight.

(a) Can the ridge regression problem have multiple optimal solutions?
Why or why not? Justify your answer.

(b) In a Bayesian model, the parameter θ is viewed as random, and equipped
with a prior distribution π. The maximum a posteriori (MAP) esti-
mate is obtained by maximizing the function f(θ) : = P(y | X, θ) π(θ).
Explain how the ridge regression estimate can be recovered as a MAP
estimate.

(c) Suppose that the matrix X is orthonormal. Give an explicit and easily
computed expression for the ridge regression solution as a function
(y,X, λn).

(d) If we replace the quantity ‖θ‖2
2
with the ℓ1-norm ‖θ‖1 =

∑d
j=1

|θj |,
the resulting estimator is known as the Lasso. Assuming that X is
orthonormal, give an explicit and easily computed expression for the
Lasso solution as a function of (y,X, λn).

(e) Based on parts (c) and (d), which estimator (ridge or Lasso) is likely
to lead to a sparser solution? Explain. (Note: A vector is sparse if it
has a relatively small number s ≪ d of non-zero components.)

Problem 2.4

Recall that a probability distribution in the exponential family takes the
form

p(x; η) = h(x) exp{ηTT (x)−A(η)}
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for a parameter vector η, often referred to as the natural parameter, and for
given functions T , A, and h.

(a) Determine which of the following distributions are in the exponential
family, exhibiting the T , A, and h functions for those that are.

(i) N(µ, I)—multivariate Gaussian with mean vector µ and identity
covariance matrix.

(ii) Dir(α)—Dirichlet with parameter vector α = (α1, α2, . . . , αK).

(iii) Mult(θ)—multinomial with parameter vector θ = (θ1, θ2, . . . , θK).
Use the fact that θK = 1−

∑K−1

k=1
θk and express the distribution

using a (K − 1)-dimensional parameter η.

(iv) the uniform distribution over the interval [0, η].

(v) the log normal distribution: the distribution of Y = exp(X),
where X ∼ N(0, σ2).

(b) Recall that the function A(η) has moment-generating properties—
in particular, ∇ηA(η) = E[T (X)]. Demonstrate that this relationship
holds for those examples that are in the exponential family in part (a).

Problem 2.5

(ML/entropy, conjugacy and duality): Given a function f : R
n → R ∪

{+∞}, the dual function is a new function f∗ : Rn → R∪{+∞}, defined as
follows:

f∗(v) = sup
u∈Rn

{
vTu− f(u)

}
. (1)

(Note that the supremum can be +∞ for some v ∈ R
n.)

(a) Given the cumulant generating function A(θ) = log[1 + exp(θ)], for a
Bernoulli variable, compute the dual function A∗. What is the link
between this computation and maximum likelihood estimation? How
is A∗ related to binomial entropy? Compute the double dual A∗∗,
and verify that A∗∗ = A. How is computing A∗∗ related to maximum
entropy?

(b) Using the definition (1), prove that the dual function f∗ is always
convex: i.e., for all λ ∈ [0, 1], v, v′ ∈ R

n, f∗
(
λv+(1−λ)v′

)
≤ λf∗(v)+

(1− λ)f∗(v′).
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(c) Given a function f , assume that it is differentiable on R
n, and that

it satisfies the duality relation f∗∗ = f . Use definition (1) for f∗ and
f∗∗ = f to prove that f(u) ≥ f(w)+∇f(w)T (u−w) for all u,w ∈ R

n.

Hint: Each of parts (b) and (c) require proofs, but the arguments need not
be very long.

Problem 2.6

Maximum entropy and exponential families For a discrete random variable
X ∈ X with distribution p(·), the (Boltzmann-Shannon) entropy is given
by H(p) : = −

∑
x∈X p(x) log p(x). (We assume that 0 log 0 = 0 in this

expression). The entropy is a measure of the uncertainty associated with X.
Although entropy can be defined more generally, for this problem assume
that |X | is finite.

(a) Suppose that we are given a set of expectation constraints on p(·),
say of the form

∑
x∈X p(x)Tα(x) = µα for a collection of functions

{φ1, T2, . . . , TD}. (In practice, these constraints would be imposed
by making observations.) Consider the maximum entropy problem of
maximizing H(p) subject to these expectation constraints, the non-
negativity condition p(x) ≥ 0 for all x ∈ X , and the normalization
constraint

∑
x∈X p(x) = 1. Write out the Lagrangian associated with

this constrained optimization problem.

(b) By computing stationary points of the Lagrangian, show that the op-
timal solution p̂ takes the form of an exponential family.
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