1 Random Walks

A random walk is a special kind of Markov chain. In a random walk, the states are all integers. Negative numbers are (sometimes) allowed. Say you start in a state \(a \). The one-step transitions are that, with probability \(p \), you move to state \(a + 1 \) and with probability \(q = 1 - p \), you move to state \(a - 1 \). The largest move you can make per transition is one step in either direction, and there is no probability of remaining in the same state.

A couple of interesting facts:

The simple random walk is *temporally homogeneous*:

\[
P(S_n = j | S_0 = a) = P(S_{m+n} = |S_m = a)
\]

What this means is that starting in state \(a \) and being in state \(j \) after \(n \) transitions has the same probability as being in state \(a \) after the first \(m \) transitions, and then being in state \(j \) \(n \) transitions after that.

The simple random walk has the *Markov property*:

\[
P(S_{m+n} = j | S_0, S_1, \ldots, S_m) = P(S_{m+n} = j | S_m)
\]

This means that the probability of getting to state \(j \) in \(n \) transitions depends only on the state you’re currently in. Knowing anything or everything that occurred prior to that state gives no additional information.

2 Absorbing Probabilities

Suppose we have a random walk which is restricted to the range \([a, b]\). In other words, you start at some state in that range, and once your walk reaches either state \(a \) or \(b \), the walk ends. Here, \(a \) and \(b \) are called *absorbing* states: once the walk reaches either state, it will never leave that state.
In the lecture notes, the professor derives a formula for finding the probability that the walk ends at state b rather than state a, given that you started in state h:

$$w_h = \left(\frac{q}{p}\right)^b - \left(\frac{q}{p}\right)^a \quad \text{for} \ p \neq q$$

$$w_h = \frac{h - a}{b - a} \quad \text{for} \ p = q$$

There are similar equations given for the probability you end in state a:

$$u_h = \left(\frac{q}{p}\right)^b - \left(\frac{q}{p}\right)^h \quad \text{for} \ p \neq q$$

$$u_h = \frac{b - h}{b - a} \quad \text{for} \ p = q$$

Here’s an exercise dealing with these probabilities:

A gambler, playing roulette, makes a series of $\$1$ bets. He wins a dollar with probability 9/19 and loses a dollar with probability 10/19. He starts with 8 dollars, and determines that he’ll quit when he’s broke, or when he’s reached $\$10$. What are the absorption probabilities?

We know that $p = 9/19$ and $q = 10/19$, so $q/p = 10/9$. Our lower bound is $a = 0$ and the upper is $b = 10$. Finally, our starting state is $h = 8$. Plugging these figures into the formulae above:

$$w_h = \frac{(10/9)^8 - (10/9)^0}{(10/9)^{10} - (10/9)^0} = .7083$$

$$u_h = \frac{(10/9)^{10} - (10/9)^8}{(10/9)^{10} - (10/9)^0} = .2917$$

Note that these sum to 1. This isn’t surprising! It’s provable (and no, I’m not going to prove it...) that a random walk of this set up will eventually reach one of its absorbing states.

3 Mean number of steps taken until walk stops

Formula in the lecture notes:

$$m_h = \frac{w_h(b - h) + u_h(a - h)}{p - q}$$

Let’s see how long, on average, our gambler will be playing:
\[
m_{90} = \frac{.7083(10 - 8) + .2917(0 - 8)}{9/19 - 10/19} \approx 17.4
\]

4 Maximum height of the walk

This all has been working towards the test statistic used in BLAST. In BLAST, you start at \(h = 0 \), there’s an absorbing state at \(a = -1 \), but there’s no upper absorbing state: the number can get as big as you want! However, the instant you get to -1, it’s game over. The concern is with \(Y_{\text{max}} \), the largest number your walk reaches before it ends. Class notes show that

\[
\mathbb{P}(Y_{\text{max}} \geq y) = 1 - (1 - (1 - e^{-\lambda})e^{-\lambda y})^m
\]

where \(\lambda = \log (q/p) \).