Ordered Hypothesis Testing Problem

- Setup of Multiple Testing Problem: a sequence of hypotheses H_1, \ldots, H_n.
- $H_s = \{0, \ldots, s-1\}$ is true: $S = \{0, \ldots, s-1\}$, rejected $R = \{s \in \{0, \ldots, n\}: \mid S \cap H_s \mid \leq k \}$.
- FDP $= \frac{\mid R \mid}{t}$ be the False Discovery Proportion.
- FDR $= \frac{E[R]}{t}$ be the False Discovery Rate.
- A procedure that control FDR at level 0.1 produces a rejection set S with roughly 90% being the true discoveries.

Setup of Ordered Testing Problem: H_1, \ldots, H_n sorted via prior knowledge.

- Domain knowledge might be used to indicate which hypothesis is more "promising", i.e., less likely to be rejected.
- Heuristically, more focus should be put on "promising" hypotheses.

A Unified Framework of Existing Procedures

- Most existing Multiple Testing Procedures fall into the following framework:
 - Input: a sequence of p-values p_1, \ldots, p_n associated with the hypotheses H_1, \ldots, H_n, usually assuming $p_i \sim U[0,1]$; for null hypothesis;$p_i \sim U[0,1]$; for null hypothesis;
 - Rejection Rule: the rejection set S has the form $S = \{p_i \leq t \leq s\}$.
 - Choice of s and t: maximize the number of rejection $\mid S \cap H_s \mid \leq k$.
 - With a target level q, where FDP $= \frac{\mid R \mid}{t}$ is a procedure-specific estimator of FDP.

BH Procedure: (Benjamini & Hochberg, 1997) $k \geq n$ and $\frac{\mid S \cap H_s \mid \leq k}{t}$.

Storey’s BH Procedure (Storey, et al., 2004) $k \geq n$ and $\frac{\mid S \cap H_s \mid \leq k}{t}$.

Selective Sequept (SSS) (Barber & Candes, 2015) is pre-fixed and $\frac{\mid S \cap H_s \mid \leq k}{t}$.

Accumulation Test (AT) (Li & Barber, 2015) $s = 1$ and for $h \geq 0$ with $\frac{\mid S \cap H_s \mid \leq k}{t}$.

Seqstest (Barber & Candes, 2015) AT with $h(x) = C(x > 1 - 1/\bar{C})$.

Adaptive Seqstest and FDR Control

- **Adaptive Seqstest (AS)**: s is pre-fixed and $\frac{\mid S \cap H_s \mid \leq k}{t}$.
- Motivation: Similar to Storey’s correction of BH procedure. Notice that $\frac{\mid S \cap H_s \mid \leq k}{t}$ is the fraction of null hypotheses. Thus, $\frac{\mid S \cap H_s \mid \leq k}{t}$ is too conservative when s is small. By contrast, $\frac{\mid S \cap H_s \mid \leq k}{t}$.

FDR Control in Finite Samples

Theorem 1. Assume that

- $\{p_i \leq \mu \}$ are independent of $\{p_i \leq \mu \}$;
- $\{p_i \leq \mu \}$ are i.i.d. with distribution function $F_i \equiv U[0,1]$.

Then AS controls FDR at level q.

VCT Model and Asymptotic Power

Definition 1 (Varying Coefficient Two-groups (VCT) Model). An VCT(F_1, F_2) model is a sequence of independent p-values $p_i \sim U[0,1]$ such that

- $p_i \sim \tau_i / \tau_{\mu}$ (for some distinct distributions F_1 and F_2),
- $p_i = f_i / \tau_{\mu}$ and f_i are the null and non-null distributions and τ_{μ} is the local non-null probability for $s \in [0,1]$.

For a VCT model, the Cumulative non-null fraction is defined as $F_{\mu} = \frac{1}{2}$.

Theorem 2. Consider a VCT model with $F_{\mu} = \frac{1}{2}$.

- F_{μ} is strictly decreasing and Lipschitz on $[0,1]$ with $F_{\mu} = \frac{1}{2}$.
- f_i is the uniform distribution on $[0,1]$ and $f_i = F_{\mu}$ is strictly decreasing on $[0,1]$. Then $\frac{\mid S \cap H_s \mid \leq k}{t}$.

Power Comparison: AS versus SS and AT

Real Data Example: GEOquery Data

Parameter Selection: s and k

- We take $s = q$ and $\lambda = 0.1$ as default and the left figure shows the simulated power in finite samples (with $\lambda = 0.1, \mu = 2, q = 0.01, \mid S \cap H_s \mid \leq 0.05$).
- $\lambda = 0.5$ is a rule of thumb and it is much more stable than a large λ, as suggested by theory.
- The choice of s depends on the quality of ordering. Unless the ordering is very bad (either $\mid S \cap H_s \mid \leq 0.1$ or $\mid S \cap H_s \mid \leq 0.01$), $s = q$ gives a reasonable performance.

- We could try a grid of values for s, e.g., $(0.5, 0.25, 0.1)$, to improve the number of rejections. We will explore the validity of processes of this type in future researches.

References

