High Dimensional Edgeworth Expansion With Applications to Bootstrap and Its Variants

Lihua Lei, Michael Jordan

Department of Statistics, UC Berkeley

Stanford-Berkeley Colloquium, 2016
Table of Contents

1 Background

2 High Dimensional Settings

3 Main Results
1 Background

2 High Dimensional Settings

3 Main Results
Given the data $\mathcal{X} = (X_1, \ldots, X_n)^{i.i.d.} F$;

$X_i \in \mathbb{R}^p, \mathbb{E}X_i = 0, \mathbb{E}X_iX_i^T = V$;

Sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$;

Goal: approximate the distribution of \bar{X}, i.e. approx.

$$P \left(\sqrt{n}V^{-\frac{1}{2}} \bar{X} \in A \right)$$

for $A \in C$ where C denote the collection of all covex sets in \mathbb{R}^p.
Let Φ be the measure of $N(0, I_p \times p)$. When the dimension p is fixed:

- **Central Limit Theorem (CLT):**

$$\sup_{A \in C} \left| P \left(\sqrt{n} V^{-\frac{1}{2}} \bar{X} \in A \right) - \Phi(A) \right| = o(1);$$
Let Φ be the measure of $N(0, I_p \times p)$. When the dimension p is fixed:

- **Central Limit Theorem (CLT):**

 $$\sup_{A \in \mathcal{C}} |P \left(\sqrt{n} V^{-\frac{1}{2}} \bar{X} \in A \right) - \Phi(A)| = o(1);$$

- **Berry-Esseen Bound (with third-order moments):**

 $$\sup_{A \in \mathcal{C}} |P \left(\sqrt{n} V^{-\frac{1}{2}} \bar{X} \in A \right) - \Phi(A)| = O \left(n^{-\frac{1}{2}} \right);$$
Edgeworth Expansion (with $(\nu + 3)$-order moments):

$$\sup_{A \in \mathcal{C}} \left| P \left(\sqrt{n} V^{-\frac{1}{2}} X \in A \right) - \Phi(A) - \sum_{j=1}^{\nu} n^{-\frac{j}{2}} P_j(A) \right| = O \left(n^{-\frac{\nu+1}{2}} \right);$$

where $P_j(\cdot)$ are sign measures determined by the cumulants of F.

When $\nu = 1$ and $p = 1$,

$$\sup_{A \in \mathcal{C}} \left| P \left(\sqrt{n} V^{-\frac{1}{2}} X \in A \right) - \Phi(A) - n^{-\frac{1}{2}} P_1(A) \right| = O \left(n^{-1} \right)$$

where $P_1(A)$ has a density

$$p_1(x) = \frac{1}{6} (x^3 - x) \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$
Draw a bootstrap sample \(X_1^*, \ldots, X_n^* \sim \hat{F}_n\) where \(\hat{F}_n\) is the ecdf of \(X_1, \ldots, X_n\).
Edgeworth Expansion and Bootstrap

- Draw a bootstrap sample X_1^*, \ldots, X_n^* i.i.d. \hat{F}_n where \hat{F}_n is the ecdf of X_1, \ldots, X_n;

- Heuristically, a first-order edgeworth expansion implies

 $\sup_{A \in \mathcal{C}} \left| P \left(\sqrt{n} \left(V^* \right)^{-\frac{1}{2}} (\bar{X}^* - \bar{X}) \in A \right) - \Phi(A) - n^{-\frac{1}{2}} P_1^*(A) \right| = O \left(n^{-1} \right) ;$

where $V^* = \text{Var}(X_1^*)$ and $P_1^*(\cdot)$ is determined by the cumulants of X_1^*.

Draw a bootstrap sample $X_1^*, \ldots, X_n^* \overset{i.i.d.}{\sim} \hat{F}_n$ where \hat{F}_n is the ecdf of X_1, \ldots, X_n;

Heuristically, a first-order Edgeworth expansion implies

$$\sup_{A \in C} \left| P \left(\sqrt{n}(V^*)^{-\frac{1}{2}}(\bar{X}^* - \bar{X}) \in A \right) - \Phi(A) - n^{-\frac{1}{2}} P_1^*(A) \right| = O\left(n^{-1}\right);$$

where $V^* = \text{Var}(X_1^*)$ and $P_1^*(\cdot)$ is determined by the cumulants of X_1^*.

Recall that

$$\sup_{A \in C} \left| P \left(\sqrt{n}V^{-\frac{1}{2}} \bar{X} \in A \right) - \Phi(A) - n^{-\frac{1}{2}} P_1(A) \right| = O(n^{-1});$$
The cumulants of F and those of \hat{F}_n are closed and thus

$$\sup_{A \in C} |P_1(A) - P_1^*(A)| = O\left(n^{-\frac{1}{2}}\right).$$
The cumulants of F and those of \hat{F}_n are closed and thus
\[\sup_{A \in C} |P_1(A) - P_1^*(A)| = O\left(n^{-\frac{1}{2}}\right). \]

As a consequence,
\[\sup_{A \in C} \left| P\left(\sqrt{n}(V^*)^{-\frac{1}{2}}(\tilde{X}^* - \tilde{X}) \in A \bigg| \mathcal{X}\right) - P\left(\sqrt{n}V^{-\frac{1}{2}}\tilde{X} \in A \bigg| \mathcal{X}\right) \right| = O\left(n^{-1}\right). \]
The cumulants of F and those of \hat{F}_n are closed and thus

$$\sup_{A \in \mathcal{C}} |P_1(A) - P_1^*(A)| = O\left(n^{-\frac{1}{2}}\right).$$

As a consequence,

$$\sup_{A \in \mathcal{C}} \left| P\left(\sqrt{n}(V^*)^{-\frac{1}{2}}(\tilde{X}^* - \tilde{X}) \in A \mid \mathcal{X}\right) - P\left(\sqrt{n}V^{-\frac{1}{2}}\tilde{X} \in A\right)\right| = O\left(n^{-1}\right).$$

This is called *Higher-Order Accuracy* (Hall, 1992).
Table of Contents

1 Background

2 High Dimensional Settings

3 Main Results
The CLT in high dimensions has been investigated since 60’s, e.g. Sazonov, 1968; Portnoy, 1986; Gotze, 1991.

- Sharp result is obtained by Bentkus (2003), $\sup_{A \in \mathcal{C}} \left| \sqrt{n}V - \bar{X} \right| = O\left(p \sqrt{n} \right)$;
- Fundamental limit: $p = o\left(n^{-2/7} \right)$ for CLT to hold;
The CLT in high dimensions has been investigated since 60’s, e.g. Sazonov, 1968; Portnoy, 1986; Gotze, 1991.

Sharp result is obtained by Bentkus (2003),

\[
\sup_{A \in \mathcal{C}} \left| P \left(\sqrt{n} V^{-\frac{1}{2}} \bar{X} \in A \right) - \Phi(A) \right| = O \left(\frac{p^\frac{7}{4}}{\sqrt{n}} \right);
\]
The CLT in high dimensions has been investigated since 60’s, e.g. Sazonov, 1968; Portnoy, 1986; Gotze, 1991.

Sharp result is obtained by Bentkus (2003),

$$\sup_{A \in \mathcal{C}} |P \left(\sqrt{n} V^{-\frac{1}{2}} \bar{X} \in A \right) - \Phi(A) | = O \left(\frac{p^{\frac{7}{4}}}{\sqrt{n}} \right);$$

Fundamental limit: \(p = o(n^{\frac{2}{7}})\) for CLT to hold;
In contrast to CLT, very few works on edgeworth expansion in high dimensions; Some results on Banach space but focus on $\mathbb{E}f(\bar{X})$ for smooth f instead of the law of \bar{X} (Gotze, 1981; Bentkus, 1984).

Using existing techniques (Bhattacharya & Rao, 1986): $p \leq \text{PolyLog}(n)$;

Fundamental limit: $n^{-1/2}P_1(A)$ is of order $n^{-1/2}p^{-3}$, without further constraints, $p \leq n^{1/6}$.

Question: How fast can the dimension grow with n?
In contrast to CLT, very few works on edgeworth expansion in high dimensions; Some results on Banach space but focus on $Ef(\bar{X})$ for smooth f instead of the law of \bar{X} (Gotze, 1981; Bentkus, 1984).

Using existing techniques (Bhattacharya & Rao, 1986):

$$p \preceq \text{PolyLog}(n);$$
Edgeworth Expansion in High Dimensions

- In contrast to CLT, very few works on edgeworth expansion in high dimensions; Some results on Banach space but focus on $\mathbb{E}f(\bar{X})$ for smooth f instead of the law of \bar{X} (Gotze, 1981; Bentkus, 1984).
- Using existing techniques (Bhattacharya & Rao, 1986):
 \[p \preceq \text{PolyLog}(n); \]

- Fundamental limit: $n^{-\frac{1}{2}} P_1(A)$ is of order $n^{-\frac{1}{2}} p^3$, without further constraints,
 \[p \preceq n^{\frac{1}{6}}. \]
In contrast to CLT, very few works on edgeworth expansion in high dimensions; Some results on Banach space but focus on $\mathbb{E}f(\bar{X})$ for smooth f instead of the law of \bar{X} (Gotze, 1981; Bentkus, 1984).

Using existing techniques (Bhattacharya & Rao, 1986):

$$p \preceq \text{PolyLog}(n);$$

Fundamental limit: $n^{-\frac{1}{2}} P_1(A)$ is of order $n^{-\frac{1}{2}} p^3$, without further constraints,

$$p \preceq n^{\frac{1}{6}}.$$

Question: How fast can the dimension grow with n?
Table of Contents

1 Background

2 High Dimensional Settings

3 Main Results
Theorem 1.

Let X_1, \ldots, X_n be i.i.d. samples with zero mean and covariance matrix V. Assume that

1. $\lambda_{\text{max}}(V) = O(1), \lambda_{\text{min}}(V) = \Omega(1)$;
2. $p = O(n^{\gamma})$ for some $\gamma < \frac{1}{14}$;
3. $|X_{ij}| \leq B = O(1)$;

Then for any positive integer S,

$$\sup_{A \in C_n} \left| P(\sqrt{n} V^{-\frac{1}{2}} \tilde{X} \in A) - \Phi(A) - \sum_{j=1}^{\nu} n^{-\frac{j}{2}} P_j(A) \right| = O \left(\left(\frac{p^9}{n} \right)^{\frac{\nu+1}{2}} \right).$$
Here C_n includes all convex sets plus all sets with form

$$\{ F^{-1}(A) : A \text{ is convex} \}$$

for arbitrary smooth non-linear functions $F : \mathbb{R}^p \to \mathbb{R}$.
Here C_n includes all convex sets plus all sets with form

$$\{ F^{-1}(A) : A \text{ is convex} \}$$

for arbitrary smooth non-linear functions $F : \mathbb{R}^p \to \mathbb{R}$.

As a corollary, for a smooth F,

$$P(F(\sqrt{n}\bar{X}) \in A) \approx \Phi_0, \nu(F^{-1}(A)) + \sum_{j=1}^{\nu} n^{-\frac{i}{2}} P_j(\nu^{\frac{1}{2}} F^{-1}(A)).$$

This gives an edgeworth expansion for smooth transform of mean.
Theorem 2.

Let X_1, \ldots, X_n be i.i.d. samples with zero mean and covariance matrix V and $X_1^*, \ldots, X_n^* \overset{i.i.d.}{\sim} \hat{F}_n$. Assume that

1. $\lambda_{\max}(V) = O(1), \lambda_{\min}(V) = \Omega(1)$;
2. $p = \Theta(n^\gamma)$ for some $0 < \gamma < \frac{1}{17}$;
3. $|X_{ij}| \leq B = O(1)$.

Then with probability $1 - \exp\{-\Omega(n^\gamma)\}$,

$$
\sup_{A \in \mathcal{C}_n} \left| P \left(V^{-\frac{1}{2}} (\bar{X}^* - \bar{X}) \in A \right) - P \left(V^{-\frac{1}{2}} \bar{X} \in A \right) \right| \leq \frac{Cp^9}{n}.
$$

This is strictly better than the bound given by CLT since

$$
\frac{p^9}{n} \ll \frac{p^7}{\sqrt{n}}, \quad \text{when } p = O(n^{\frac{1}{17}}).
$$
Thanks!

