Inference For High Dimensional M-estimates: Fixed Design Results

Lihua Lei
Advisors: Peter J. Bickel, Michael I. Jordan

joint work with Peter J. Bickel and Noureddine El Karoui

Dec. 8, 2016
Table of Contents

1 Background

2 Main Results and Examples

3 Assumptions and Proof Sketch

4 Numerical Results
Table of Contents

1 Background

2 Main Results and Examples

3 Assumptions and Proof Sketch

4 Numerical Results
Observe \(\{x_1, y_1\}, \{x_2, y_2\}, \ldots, \{x_n, y_n\} \):

- response vector \(Y = (y_1, \ldots, y_n)^T \in \mathbb{R}^n \);
- design matrix \(X = (x_1^T, \ldots, x_n^T)^T \in \mathbb{R}^{n \times p} \).
Observe \(\{x_1, y_1\}, \{x_2, y_2\}, \ldots, \{x_n, y_n\} \):

- response vector \(Y = (y_1, \ldots, y_n)^T \in \mathbb{R}^n \);
- design matrix \(X = (x_1^T, \ldots, x_n^T)^T \in \mathbb{R}^{n \times p} \).

Model:

- Linear Model: \(Y = X \beta^* + \epsilon \);
- \(\epsilon = (\epsilon_1, \ldots, \epsilon_n)^T \in \mathbb{R}^n \) being a random vector;
M-Estimator: Given a convex loss function $\rho(\cdot) : \mathbb{R} \to [0, \infty)$,

$$\hat{\beta} = \arg \min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \rho(y_i - x_i^T \beta).$$
M-Estimator: Given a convex loss function $\rho(\cdot) : \mathbb{R} \rightarrow [0, \infty)$,

$$
\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{n} \rho(y_i - x_i^T \beta).
$$

When ρ is differentiable with $\psi = \rho'$, $\hat{\beta}$ can be written as the solution:

$$
\frac{1}{n} \sum_{i=1}^{n} \psi(y_i - x_i^T \hat{\beta}) = 0.
$$
\(\rho(x) = x^2 / 2 \) gives the Least-Square estimator;
\[\rho(x) = \frac{x^2}{2} \] gives the Least-Square estimator;
M-Estimator: Examples

- \(\rho(x) = \frac{x^2}{2} \) gives the Least-Square estimator;
- \(\rho(x) = |x| \) gives the Least-Absolute-Deviation estimator;

![Graph of L2 Loss](image)

![Graph of Huber Loss](image)
M-Estimator: Examples

- $\rho(x) = \frac{x^2}{2}$ gives the Least-Square estimator;
- $\rho(x) = |x|$ gives the Least-Absolute-Deviation estimator;

\[\rho(x) = \begin{cases}
\frac{x^2}{2} & \text{if } |x| \leq k \\
\left(|x| - \frac{k}{2}\right)^+ & \text{if } |x| > k
\end{cases} \]
gives the Huber estimator.
M-Estimator: Examples

- $\rho(x) = \frac{x^2}{2}$ gives the Least-Square estimator;
- $\rho(x) = |x|$ gives the Least-Absolute-Deviation estimator;
- $\rho(x) = \begin{cases} \frac{x^2}{2} & |x| \leq k \\ k(|x| - k/2) & |x| > k \end{cases}$ gives the Huber estimator.

L_2 Loss

L_1 Loss

Huber Loss
M-Estimator: Examples

- \(\rho(x) = \frac{x^2}{2} \) gives the Least-Square estimator;
- \(\rho(x) = |x| \) gives the Least-Absolute-Deviation estimator;
- \(\rho(x) = \begin{cases}
 \frac{x^2}{2} & |x| \leq k \\
 k(|x| - k/2) & |x| > k
\end{cases} \) gives the Huber estimator.
Goal (Informal): Make inference on the coordinates of $\hat{\beta}$ when
- the dimension p is \textit{comparable to} the sample size n;
- and X is treated as \textit{fixed};
- \textit{without assumptions on} β^*.
Goal (Informal): Make inference on the coordinates of $\hat{\beta}$ when
- the dimension p is comparable to the sample size n;
- and X is treated as fixed;
- without assumptions on β^*.

Consider β^*_1 WLOG;
- Given X and $L(\epsilon)$, $L(\hat{\beta}_1)$ is uniquely determined;
- Ideally, we construct a 95% confidence interval for β^*_1 as

$$\left[q_{0.025}\left(L(\hat{\beta}_1)\right), q_{0.975}\left(L(\hat{\beta}_1)\right) \right]$$

where q_α denotes the α-th quantile;
- Unfortunately, $L(\hat{\beta}_1)$ is complicated.
Asymptotic Arguments

Exact finite sample inference is hard. This motivates statisticians to resort to asymptotic arguments, i.e. find a distribution F s.t.

$$\mathcal{L}(\hat{\beta}_1) \approx F.$$
Asymptotic Arguments

Exact finite sample inference is hard. This motivates statisticians to resort to asymptotic arguments, i.e. find a distribution F s.t.

$$\mathcal{L}(\hat{\beta}_1) \approx F.$$

- The limiting behavior of $\hat{\beta}$ when p is fixed, as $n \to \infty$,

$$\mathcal{L}(\hat{\beta}) \to N \left(\beta^*, (X^TX)^{-1} \frac{\mathbb{E}(\psi^2(\epsilon_1))}{[\mathbb{E}\psi'(\epsilon_1)]^2} \right);$$

- As a consequence, we obtain an approximate 95% confidence interval for β_1^*,

$$\left[\hat{\beta}_1 - 1.96\hat{sd}(\hat{\beta}_1), \hat{\beta}_1 + 1.96\hat{sd}(\hat{\beta}_1) \right]$$

where $\hat{sd}(\hat{\beta}_1)$ could be any consistent estimator of the standard deviation.
In other words, to approximate $\mathcal{L}(\hat{\beta}_1)$, we consider a sequence of hypothetical problems, indexed by j, where the j-th problem has a sample size $n_j \to \infty$ and a dimension $p_j = p$. For the j-th problem, denote by $\hat{\beta}(j)$ the corresponding M-estimator, then the previous slide uses $\lim_{j \to \infty} \mathcal{L}(\hat{\beta}(j))$ to approximate $\mathcal{L}(\hat{\beta}_1)$. In general, p_j is not necessarily fixed and can grow to infinity.
In other words, to approximate $\mathcal{L}(\hat{\beta}_1)$, we consider a sequence of hypothetical problems, indexed by j, where the j-th problem has a sample size $n_j \to \infty$ and a dimension $p_j = p$.

For j-th problem, denote by $\hat{\beta}^{(j)}$ the corresponding M-estimator, then the previous slide uses

$$\lim_{j \to \infty} \mathcal{L}(\hat{\beta}^{(j)})$$

to approximate $\mathcal{L}(\hat{\beta}_1)$.

In general, p_j is not necessarily fixed and can grow to infinity.
In other words, to approximate $\mathcal{L}(\hat{\beta}_1)$, we consider a sequence of hypothetical problems, indexed by j, where the j-th problem has a sample size $n_j \to \infty$ and a dimension $p_j = p$.

For j-th problem, denote by $\hat{\beta}(j)$ the corresponding M-estimator, then the previous slide uses

$$\lim_{j \to \infty} \mathcal{L}(\hat{\beta}(j))$$

to approximate $\mathcal{L}(\hat{\beta}_1)$.

In general, p_j is not necessarily fixed and can grow to infinity.
Huber (1973) raised the question of understanding the behavior of $\hat{\beta}$ when both n and p tend to infinity;

Huber (1973) showed the L_2 consistency of $\hat{\beta}$:

$$\|\hat{\beta} - \beta^*\|^2 \rightarrow 0$$

under the regime

$$\frac{p^3}{n} \rightarrow 0;$$

Portnoy (1984) prove the L_2 consistency of $\hat{\beta}$ under the regime

$$\frac{p \log p}{n} \rightarrow 0;$$
Portnoy (1985) showed that $\hat{\beta}$ is jointly asymptotically normal under the regime

$$\frac{(p \log n)^{\frac{3}{2}}}{n} \rightarrow 0,$$

in the sense that for any sequence of vectors $a_n \in \mathbb{R}^p$,

$$\mathcal{L} \left(\frac{a_n^T (\hat{\beta} - \beta^*)}{\sqrt{\text{Var}(a_n^T \hat{\beta})}} \right) \rightarrow N(0, 1)$$
All of the above works requires

\[\frac{p}{n} \to 0 \quad \text{or} \quad \frac{n}{p} \to \infty. \]

\[\frac{n}{p} \] is the number of samples per parameter. Heuristically, a larger \(\frac{n}{p} \) would give an easier problem.
All of the above works requires

\[\frac{p}{n} \to 0 \quad \text{or} \quad \frac{n}{p} \to \infty. \]

\(\frac{n}{p} \) is the number of samples per parameter. Heuristically, a larger \(n/p \) would give an easier problem.
Recall that the approximation can be seen as a sequence of hypothetical problems with sample size n_j and dimension p_j. If $n_j/p_j \to \infty$, the problems become increasingly easier as j grows.
Recall that the approximation can be seen as a sequence of hypothetical problems with sample size n_j and dimension p_j. If $n_j/p_j \to \infty$, the problems become increasingly easier as j grows.

In other words, the hypothetical problem used for approximation is much easier than the original problem. Then the approximation accuracy might be compromised.
Instead, we can consider a sequence of hypothetical problems with p_j/n_j fixed to be the same as the original problem, i.e.

$$p_j/n_j \equiv p/n.$$
Instead, we can consider a sequence of hypothetical problems with p_j/n_j fixed to be the same as the original problem, i.e.

$$p_j/n_j \equiv p/n.$$

In this case, the **difficulty** of the problem is **fixed**.
Formally, we define **Moderate p/n Regime** as

$$p_j/n_j \to \kappa > 0.$$

A typical value for κ is p/n in the original problem.
Consider a set of small-sample problems where \(n = 50 \) and \(p = n\kappa \) for \(\kappa \in \{0.1, \ldots, 0.9\} \). For each pair \((n, p)\),

Step 1 Generate \(X \in \mathbb{R}^{n \times p} \) with i.i.d. \(N(0, 1) \) entries;

Step 2 Fix \(\beta^* = 0 \) and sample \(Y = \epsilon \) with

\[
\epsilon_i \overset{i.i.d.}{\sim} N(0, 1) \quad \text{or} \quad \epsilon_i \overset{i.i.d.}{\sim} t_2;
\]

Step 3 Estimate \(\beta_1^* \) by \(\hat{\beta}_1 \) with a Huber loss;

Step 4 Repeat Step 2 - Step 3 for 100 times and estimate \(L(\hat{\beta}_1) \).
Now consider two types of approximations:

- **Fixed-p Approx.**: $N = 1000, P = p$;
- **Moderate-p/n Approx.**: $N = 1000, P = 1000\kappa$;

Repeat Step 1-Step 4 for new pairs (N, P) and estimate

- $\mathcal{L}(\hat{\beta}_1^F)$ (Fixed p);
- $\mathcal{L}(\hat{\beta}_1^M)$ (Moderate p/n).
Now consider two types of approximations:

- **Fixed-p Approx.**: $N = 1000, \; P = p$;
- **Moderate-p/n Approx.**: $N = 1000, \; P = 1000\kappa$;

Repeat Step 1-Step 4 for new pairs (N, P) and estimate

- $L(\hat{\beta}_1^F)$ (Fixed p);
- $L(\hat{\beta}_1^M)$ (Moderate p/n).

Measure the accuracy of two approximations by the Kolmogorov-Smirnov statistics

$$d_{KS} \left(L(\hat{\beta}_1), L(\hat{\beta}_1^F) \right) \quad \text{and} \quad d_{KS} \left(L(\hat{\beta}_1), L(\hat{\beta}_1^M) \right)$$
Distance between the small sample and large sample distribution

<table>
<thead>
<tr>
<th></th>
<th>normal</th>
<th>t(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asym. Regime</td>
<td>p fixed</td>
<td>p/n fixed</td>
</tr>
</tbody>
</table>

Kolmogorov–Smirnov Statistics

Distance between the small sample and large sample distribution

Asym. Regime
- p fixed
- p/n fixed
The moderate p/n regime has been widely studied in random matrix theory. In statistics:

- Huber (1973) showed that for least-square estimators there always exists a sequence of vectors $a_n \in \mathbb{R}^p$ such that

$$L \left(\frac{a_n^T (\hat{\beta}_{LS} - \beta^*)}{\sqrt{\text{Var}(a_n^T \hat{\beta}_{LS})}} \right) \not \xrightarrow{d} \mathcal{N}(0, 1).$$

- Bickel and Freedman (1982) showed that the bootstrap fails in the Least-Square case and the usual rescaling does not help;

- El Karoui et al. (2011) showed that for general loss functions,

$$\|\hat{\beta} - \beta^*\|_2^2 \not \xrightarrow{a.s.} 0.$$
The moderate p/n regime has been widely studied in random matrix theory. In statistics:

- Huber (1973) showed that for least-square estimators there always exists a sequence of vectors $a_n \in \mathbb{R}^p$ such that
 \[
 \mathcal{L} \left(\frac{a_n^T(\hat{\beta}_{LS} - \beta^*)}{\sqrt{\text{Var}(a_n^T \hat{\beta}_{LS})}} \right) \not\rightarrow N(0, 1).
 \]
- Bickel and Freedman (1982) showed that the bootstrap fails in the Least-Square case and the usual rescaling does not help;
- El Karoui et al. (2011) showed that for general loss functions,
 \[
 \|\hat{\beta} - \beta^*\|_2^2 \not\rightarrow 0.
 \]

- Main reason: \hat{F}_n, the empirical distribution of the residuals, namely $R_i \triangleq y_i - x_i^T \hat{\beta}$, does not converge to $\mathcal{L}(\epsilon_i)$.
Moderate p/n Regime: Positive Results

If X is assumed to be a random matrix under regularity conditions,
Moderate \(p/n \) Regime: Positive Results

If \(X \) is assumed to be a random matrix under regularity conditions,

- Bean et al. (2013) showed that when \(X \) has i.i.d. Gaussian entries, for any sequence of \(a_n \in \mathbb{R}^p \)
 \[
 \mathcal{L}_{X,\varepsilon} \left(\frac{a_n^T(\hat{\beta} - \beta^*)}{\sqrt{\text{Var}_{X,\varepsilon}(a_n^T\hat{\beta})}} \right) \to N(0, 1);
 \]

- The above result does not contradict Huber (1973) in that the randomness comes from both \(X \) and \(\varepsilon \);
- El Karoui et al. (2011) showed that for general loss functions,
 \[
 \|\hat{\beta} - \beta^*\|_\infty \to 0.
 \]

- Under weaker assumptions on \(X \), El Karoui (2015) showed
 \[
 \mathcal{L}_{X,\varepsilon} \left(\frac{\hat{\beta}_1(\tau) - \beta^*_1 - \text{bias}(\hat{\beta}_1(\tau))}{\sqrt{\text{Var}_{X,\varepsilon}(\hat{\beta}_1(\tau))}} \right) \to N(0, 1)
 \]
 where \(\hat{\beta}_1(\tau) \) is the ridge-penalized M-estimator.
Moderate p/n Regime: Summary

- Provides a more accurate approximation of $\mathcal{L}(\hat{\beta}_1)$;
Moderate p/n Regime: Summary

- Provides a more accurate approximation of $\mathcal{L}(\hat{\beta}_1)$;

- Qualitatively different from the classical regimes where $p/n \to 0$;
 - L_2-consistency of $\hat{\beta}$ no longer holds;
 - the residuals R_i behaves differently from ϵ_i;
 - fixed design results are different from random design results.
Moderate \(p/n \) Regime: Summary

- Provides a more accurate approximation of \(\mathcal{L}(\hat{\beta}_1) \);

- Qualitatively different from the classical regimes where \(p/n \to 0 \):
 - \(L_2 \)-consistency of \(\hat{\beta} \) no longer holds;
 - the residuals \(R_i \) behaves differently from \(\epsilon_i \);
 - fixed design results are different from random design results.

- Inference on the vector \(\hat{\beta} \) is hard; but inference on the coordinate / low-dimensional linear contrasts of \(\hat{\beta} \) is still possible.
Our Goal (formal): Under the **linear model**

\[Y = X\beta^* + \epsilon, \]

Derive the asymptotic distribution of **coordinates** \(\hat{\beta}_j \):

- under the **moderate p/n regime**, i.e. \(p/n \to \kappa \in (0, 1) \);
- with a **fixed design** matrix \(X \);
- without assumptions on \(\beta^* \).
Table of Contents

1. Background
2. Main Results and Examples
3. Assumptions and Proof Sketch
4. Numerical Results
Definition 1.
Let \(P \) and \(Q \) be two distributions on \(\mathbb{R}^p \),

\[
d_{TV}(P, Q) = \sup_{A \subset \mathbb{R}^p} |P(A) - Q(A)|.
\]
Main Result (Informal)

Definition 1.
Let P and Q be two distributions on \mathbb{R}^p,

$$d_{TV}(P, Q) = \sup_{A \subset \mathbb{R}^p} |P(A) - Q(A)|.$$

Theorem.
Under appropriate conditions on the design matrix X, the distribution of ϵ and the loss function ρ, as $p/n \to \kappa \in (0, 1)$, while $n \to \infty$,

$$\max_j d_{TV} \left(\mathcal{L} \left(\frac{\hat{\beta}_j - \mathbb{E}\hat{\beta}_j}{\sqrt{\text{Var}(\hat{\beta}_j)}} \right), N(0, 1) \right) = o(1).$$
We consider the case where X is a realization of a random design Z. The examples below are proved to satisfy the technical assumptions with high probability over Z.
We consider the case where X is a **realization** of a random design Z. The examples below are proved to **satisfy the technical assumptions with high probability** over Z.

Example 1 Z has i.i.d. mean-zero sub-gaussian entries with
$$\text{Var}(Z_{ij}) = \tau^2 > 0;$$

Example 2 Z contains an intercept term, i.e. $Z = (1, \tilde{Z})$ and
$\tilde{Z} \in \mathbb{R}^{n \times (p-1)}$ has independent sub-gaussian entries with
$$\tilde{Z}_{ij} - \mu_j \overset{d}{=} \mu_j - \tilde{Z}_{ij}, \quad \text{Var}(\tilde{Z}_{ij}) > \tau^2$$

for some arbitrary μ_j.
Example 3 \(Z \) is matrix-normal with vec\((Z) \sim \mathcal{N}(0, \Lambda \otimes \Sigma) \) and
\[
\lambda_{\max}(\Lambda), \lambda_{\max}(\Sigma) = O(1), \quad \lambda_{\min}(\Lambda), \lambda_{\min}(\Sigma) = \Omega(1)
\]

Example 4 \(Z \) contains an intercept term, i.e. \(Z = (1, \tilde{Z}) \) and vec\((\tilde{Z}) \sim \mathcal{N}(0, \Lambda \otimes \Sigma) \) with \(\Lambda \) and \(\Sigma \) satisfy the above condition and
\[
\frac{\max_i |(\Lambda^{-\frac{1}{2}}1)_i|}{\min_j |(\Lambda^{-\frac{1}{2}}1)_j|} = O(1).
\]
A Counter-Example

Consider a one-way ANOVA situation. Each observation i is associated with a label $k_i \in \{1, \ldots, p\}$ and let $X_{i,j} = I(j = k_i)$. This is equivalent to

$$Y_i = \beta_{k_i}^* + \epsilon_i.$$
Consider a one-way ANOVA situation. Each observation i is associated with a label $k_i \in \{1, \ldots, p\}$ and let $X_{i,j} = I(j = k_i)$. This is equivalent to

$$Y_i = \beta_{k_i}^* + \epsilon_i.$$

It is easy to see that

$$\hat{\beta}_j = \arg \min_{\beta \in \mathbb{R}} \sum_{i : k_i = j} \rho(y_i - \beta_j).$$

This is a standard location problem.
Let \(n_j = |\{i : k_i = j\}| \). In the least-square case, i.e. \(\rho(x) = x^2 / 2 \),

\[
\hat{\beta}_j = \beta_j^* + \frac{1}{n_j} \sum_{i: k_i = j} \epsilon_i.
\]
Let \(n_j = |\{ i : k_i = j \}| \). In the least-square case, i.e. \(\rho(x) = x^2/2 \),

\[
\hat{\beta}_j = \beta_j^* + \frac{1}{n_j} \sum_{i : k_i = j} \epsilon_i.
\]

Assume a balance design, i.e. \(n_j \approx n/p \). Then \(n_j \ll \infty \) and

- none of \(\hat{\beta}_j \) is normal (unless \(\epsilon_i \) are normal);
- holds for general loss functions \(\rho \).
Let $n_j = |\{i : k_i = j\}|$. In the least-square case, i.e. $\rho(x) = x^2 / 2$,

$$\hat{\beta}_j = \beta_j^* + \frac{1}{n_j} \sum_{i : k_i = j} \epsilon_i.$$

Assume a balance design, i.e. $n_j \approx n/p$. Then $n_j \ll \infty$ and

- none of $\hat{\beta}_j$ is normal (unless ϵ_i are normal);
- holds for general loss functions ρ.

Conclusion: some “non-standard” assumptions on X are required.
1. Background

2. Main Results and Examples

3. Assumptions and Proof Sketch
 - Least-Square Estimator: A Motivating Example
 - Second-Order Poincaré Inequality
 - Assumptions
 - Main Results

4. Numerical Results
The L_2 loss, $\rho(x) = x^2/2$, gives the least-square estimator

$$\hat{\beta}^{LS} = (X^T X)^{-1} X^T Y = \beta^* + (X^T X)^{-1} X^T \epsilon.$$
The L_2 loss, $\rho(x) = x^2 / 2$, gives the least-square estimator

$$\hat{\beta}^{LS} = (X^T X)^{-1} X^T Y = \beta^* + (X^T X)^{-1} X^T \epsilon.$$

Let e_j denote the canonical basis vector in \mathbb{R}^p, then

$$\hat{\beta}_j^{LS} - \beta_j^* = e_j^T (X^T X)^{-1} X^T \epsilon.$$

Write $e_j^T (X^T X)^{-1} X$ as α_j^T, then

$$\hat{\beta}_j^{LS} - \beta_j^* = \sum_{i=1}^{n} \alpha_{j,i} \epsilon_i.$$
Lindeberg-Feller CLT claims that in order for

\[\mathcal{L} \left(\frac{\hat{\beta}_j^{LS} - \beta^*_j}{\sqrt{\text{Var}(\hat{\beta}_j^{LS})}} \right) \rightarrow N(0, 1) \]

it is \textbf{sufficient and almost necessary} that

\[\frac{\|\alpha_j\|_\infty}{\|\alpha_j\|_2} \rightarrow 0. \] \hspace{1cm} (1)
To see the necessity of the condition, recall the one-way ANOVA case. Let $n_j = |\{i : k_i = j\}|$, then

$$X^T X = \text{diag}(n_j)_{j=1}^p.$$

This gives

$$\alpha_{j,i} = \begin{cases} \frac{1}{n_j} & \text{if } k_i = j \\ 0 & \text{if } k_i \neq j \end{cases}.$$
To see the necessity of the condition, recall the one-way ANOVA case. Let \(n_j = |\{i : k_i = j\}| \), then

\[
X^T X = \text{diag}(n_j)_j=1^p.
\]

This gives

\[
\alpha_{j,i} = \begin{cases}
\frac{1}{n_j} & \text{if } k_i = j \\
0 & \text{if } k_i \neq j
\end{cases}
\]

As a result, \(\|\alpha_j\|_{\infty} = \frac{1}{n_j} \), \(\|\alpha_j\|_2 = \frac{1}{\sqrt{n_j}} \) and hence

\[
\frac{\|\alpha_j\|_{\infty}}{\|\alpha_j\|_2} = \frac{1}{\sqrt{n_j}}.
\]

However, in moderate \(p/n \) regime, there exists \(j \) such that \(n_j \leq 1/\kappa \) and thus \(\hat{\beta}_j^LS \) is not asymptotically normal.
The result for LSE is derived from the analytical form of $\hat{\beta}^{LS}$. In contrast, an analytical form is not available for general ρ.
The result for LSE is derived from the analytical form of $\hat{\beta}^{LS}$. In contrast, an analytical form is not available for general ρ.

Let $\psi = \rho'$, it is the solution of

$$\frac{1}{n} \sum_{i=1}^{n} \psi(y_i - x_i^T \hat{\beta}) = 0$$
The result for LSE is derived from the analytical form of $\hat{\beta}^{LS}$. In contrast, an analytical form is not available for general ρ.

Let $\psi = \rho'$, it is the solution of

$$\frac{1}{n} \sum_{i=1}^{n} \psi(y_i - x_i^T \hat{\beta}) = 0$$

WLOG, assume $\beta^* = 0$, then

$$\frac{1}{n} \sum_{i=1}^{n} \psi(\epsilon_i - x_i^T \hat{\beta}) = 0.$$
Write R_i for $\epsilon_i - x_i^T \hat{\beta}$ and define D, \tilde{D} and G as

$$D = \text{diag}(\psi'(R_i)), \quad \tilde{D} = \text{diag}(\psi''(R_i)), \quad G = I - X(X^TDX)^{-1}X^TD.$$
Write R_i for $\epsilon_i - x_i^T \hat{\beta}$ and define D, \tilde{D} and G as

$$D = \text{diag}(\psi'(R_i)), \quad \tilde{D} = \text{diag}(\psi''(R_i)), \quad G = I - X(X^T DX)^{-1}X^T D.$$

Lemma 2.

Suppose $\psi \in C^2(\mathbb{R}^n)$, then

$$\frac{\partial \hat{\beta}_j}{\partial \epsilon} = e_j^T (X^T DX)^{-1}X^T D, \quad (2)$$

$$\frac{\partial \hat{\beta}_j}{\partial \epsilon \partial \epsilon^T} = G^T \text{diag}(e_j^T (X^T DX)^{-1}X^T \tilde{D}) G. \quad (3)$$
\(\hat{\beta}_j \) is a smooth transform of a random vector, \(\epsilon \), with independent entries. A powerful CLT for this type of statistics is Second-Order Poincaré Inequality (Chatterjee, 2009).
\(\hat{\beta}_j \) is a smooth transform of a random vector, \(\epsilon \), with independent entries. A powerful CLT for this type of statistics is Second-Order Poincaré Inequality (Chatterjee, 2009).

Definition 3.

For each \(c_1, c_2 > 0 \), let \(L(c_1, c_2) \) be the class of probability measures on \(\mathbb{R} \) that arise as laws of random variables like \(u(W) \), where \(W \sim N(0, 1) \) and \(u \in C^2(\mathbb{R}^n) \) with

\[
|u'(x)| \leq c_1 \text{ and } |u''(x)| \leq c_2.
\]

For example, \(u = \text{Id} \) gives \(N(0, 1) \) and \(u = \Phi \) gives \(U([0, 1]) \).
Second-Order Poincaré Inequality

Proposition 1 (SOPI; Chatterjee, 2009).

Let \(\mathcal{W} = (\mathcal{W}_1, \ldots, \mathcal{W}_n) \) \(\text{indep.} \sim L(c_1, c_2) \). Take any \(g \in C^2(\mathbb{R}^n) \) and let \(U = g(\mathcal{W}) \),

\[
\kappa_0 = \left(\mathbb{E} \sum_{i=1}^{n} |\nabla_i g(\mathcal{W})|^4 \right)^{\frac{1}{2}};
\]

\[
\kappa_1 = (\mathbb{E} \| \nabla g(\mathcal{W}) \|^4_2)^{\frac{1}{4}};
\]

\[
\kappa_2 = (\mathbb{E} \| \nabla^2 g(\mathcal{W}) \|^4_{op})^{\frac{1}{4}}.
\]

If \(U \) has a finite fourth moment, then

\[
d_{TV} \left(\mathcal{L} \left(\frac{U - \mathbb{E}U}{\sqrt{\text{Var}(U)}} \right), N(0, 1) \right) \leq \frac{\kappa_0 + \kappa_1 \kappa_2}{\text{Var}(U)}.
\]

Lihua Lei (Qualifying Exam)
Assumptions

Assume that

A1 $\rho(0) = \psi(0) = 0$ and for any $x \in \mathbb{R}$,

$$0 < K_0 \leq \psi'(x) \leq K_1, \quad |\psi''(x)| \leq K_2;$$

A2 ϵ has independent entries with $\epsilon_i \in L(c_1, c_2)$;

A3 Let λ_+ and λ_- be the largest and smallest eigenvalues of $X^T X / n$ and

$$\lambda_+ = O(1), \quad \lambda_- = \Omega(1).$$
Apply Second-Order Poincaré Inequality to $\hat{\beta}_j$, we obtain that

Lemma 4.

Let $D = \text{diag}(\psi'(\epsilon_i - x_i^T \hat{\beta}))_{i=1}^n$, and

$$M_j = \mathbb{E}\|e_j^T (X^T DX)^{-1} X^T D^{1/2}\|_\infty.$$

Then under assumptions A1-A3,

$$\max_j d_{TV} \left(\mathcal{L} \left(\frac{\hat{\beta}_j - \mathbb{E}\hat{\beta}_j}{\sqrt{\text{Var}(\hat{\beta}_j)}} \right), N(0, 1) \right) = O_p \left(\frac{\max_j (nM_j^2)^{1/8}}{n \cdot \min_j \text{Var}(\hat{\beta}_j)} \right),$$

The main result is obtained if we prove

$$M_j = o \left(\frac{1}{\sqrt{n}} \right), \quad \text{Var}(\hat{\beta}_j) = \Omega \left(\frac{1}{n} \right).$$
Define the following quantities:

- **leave-one-predictor-out estimate** \(\hat{\beta}_{[j]} \): the M-estimator obtained by removing the \(j \)-th column of \(X \) (El Karoui, 2013);
- **leave-one-predictor-out residuals** \(r_{i,[j]} = \epsilon_i - x_{i,[j]}^T \hat{\beta}_{[j]} \) where \(x_{i,[j]}^T \) is the \(i \)-th row of \(X \) after removing \(j \)-th entry;
- \(h_{j,0} = (\psi(r_{1,[j]}), \ldots, \psi(r_{n,[j]}))^T \);
- \(Q_j = \text{Cov}(h_{j,0}) \) be the covariance matrix of \(\psi(r_{i,[j]}) \).
Besides assumptions $\mathbf{A}1 - \mathbf{A}3$, we assume that

$\mathbf{A}4$ \[\min_j \frac{X_j^T Q_j X_j}{\text{tr}(Q_j)} = \Omega(1). \]
Besides assumptions A1 - A3, we assume that

\[A4 \quad \min_j \frac{X_j^T Q_j X_j}{\text{tr}(Q_j)} = \Omega(1). \]

- \(Q_j \) does not involve \(X_j \);
- Assumption A4 guarantees

\[\text{Var}(\hat{\beta}_j) = \Omega \left(\frac{1}{n} \right). \]
Further Assumptions

If X_j is a realization of a random vector Z_j with i.i.d. entries, then

$$\mathbb{E} Z_j^T Q_j Z_j = \text{tr}(\mathbb{E} Z_j Z_j^T Q_j) = \mathbb{E} Z_{1,j}^2 \cdot \text{tr}(Q_j).$$

If $Z_j^T Q_j Z_j$ concentrates around its mean, then

$$\frac{Z_j^T Q_j Z_j}{\text{tr}(Q_j)} \approx \mathbb{E} Z_{1,j}^2 > 0.$$
If X_j is a realization of a random vector Z_j with i.i.d. entries, then

$$\mathbb{E}Z_j^T Q_j Z_j = \text{tr}(\mathbb{E}Z_j Z_j^T Q_j) = \mathbb{E}Z_{1,j}^2 \cdot \text{tr}(Q_j).$$

If $Z_j^T Q_j Z_j$ concentrates around its mean, then

$$\frac{Z_j^T Q_j Z_j}{\text{tr}(Q_j)} \approx \mathbb{E}Z_{1,j}^2 > 0.$$ For example, when Z_j has i.i.d. sub-gaussian entries, the Hansen-Wright inequality implies the concentration.

$$P(|Z_j^T Q_j Z_j - \mathbb{E}Z_j^T Q_j Z_j| \geq t) \leq 2 \exp \left\{ -c \min \left\{ \frac{t^2}{\|Q_j\|_F^2}, \frac{t}{\|Q_j\|_{op}} \right\} \right\}.$$
To describe the last assumption, we define the following quantities:

- $D_{[j]} = \text{diag}(\psi'(r_{i,[j]}))$: leave-one-predictor-out version of D;
- $G_{[j]} = I - X_{[j]}(X_{[j]}^T D_{[j]} X_{[j]})^{-1} X_{[j]}^T D_{[j]}$;
- $h_{j,1,i}^T = e_i^T G_{[j]}$: the i-th row of $G_{[j]}$;
- $\Delta_C = \max \left\{ \max_j \frac{|h_{j,0} X_j|}{\|h_{j,0}\|_2}, \max_{i,j} \frac{|h_{j,1,i} X_j|}{\|h_{j,1,i}\|_2} \right\}$.

Lihua Lei (Qualifying Exam)

Inference For High Dimensional M-estimates
The last assumption:

\[A_5 \quad \mathbb{E} \Delta^8_C = O(\text{polyLog}(n)). \]
Further Assumptions

The last assumption:

A5 $\mathbb{E} \Delta^8_C = O\left(\text{polyLog}(n)\right)$.

It turns out that when $\rho(x) = x^2/2$,

$$\Delta_C \approx \max_j \left\| \frac{e_j^T (X^T X)^{-1} X^T}{\|e_j^T (X^T X)^{-1} X^T\|_\infty} \right\|_\infty.$$

Recall that for Least-Squares, $\hat{\beta}_j$ are all asymptotically normal iff the right-handed side tends to 0. This indicates that the assumption **A5** is **not just an artifact of the proof**.
Further Assumptions

Let
\[\alpha_{j,0} = h_{j,0}/\|h_{j,0}\|_2, \quad \alpha_{j,1,i} = h_{j,1,i}/\|h_{j,1,i}\|_2. \]

Again, if \(X_j \) is a realization of a random vector \(Z_j \) with i.i.d. \(\sigma^2 \)-sub-gaussian entries, then \(\alpha_{j,0}^T Z_j \) and \(\alpha_{j,1,i}^T Z_j \) are all \(\sigma^2 \)-sub-gaussian.
Let

$$\alpha_{j,0} = h_{j,0}/\|h_{j,0}\|_2, \quad \alpha_{j,1,i} = h_{j,1,i}/\|h_{j,1,i}\|_2.$$

Again, if X_j is a realization of a random vector Z_j with i.i.d. σ^2-sub-gaussian entries, then $\alpha_{j,0}^T Z_j$ and $\alpha_{j,1,i}^T Z_j$ are all σ^2-sub-gaussian.

Then Δ_C is the maximum of $np + p$ sub-gaussian random variables and hence

$$\mathbb{E}\Delta_C^8 = O(poly\text{Log}(n)).$$
Review of All Assumptions

A1 \(\rho(0) = \psi(0) = 0 \) and for any \(x \in \mathbb{R} \),

\[
0 < K_0 \leq \psi'(x) \leq K_1, \quad |\psi''(x)| \leq K_2;
\]

A2 \(\epsilon \) has independent entries with \(\epsilon_i \in L(c_1, c_2) \);

A3 Let \(\lambda_+ \) and \(\lambda_- \) be the largest and smallest eigenvalues of \(X^T X / n \) and

\[
\lambda_+ = O(1), \quad \lambda_- = \Omega(1).
\]

A4 \(\min_j \frac{Z_j^T Q_j Z_j}{\text{tr}(Q_j)} = \Omega(1) \).

A5 \(\mathbb{E} \Delta_C^8 = O(\text{polyLog}(n)) \).
Main Results

Theorem 5.

Under assumptions $\mathbf{A1} - \mathbf{A5}$, as $p/n \to \kappa$ for some $\kappa \in (0, 1)$ while $n \to \infty$,

$$\max \limits_{j} \ d_{TV} \left(\mathcal{L} \left(\frac{\hat{\beta}_j - \mathbb{E}\hat{\beta}_j}{\sqrt{\text{Var}(\hat{\beta}_j)}} \right), N(0, 1) \right) = o(1).$$
A Corollary

If further assume that

\(\textbf{A6} \) \(\rho \) is an even function and \(\epsilon_i \overset{d}{=} -\epsilon_i \).

Then one can show that \(\hat{\beta} \) is unbiased. As a consequence,
A Corollary

If further assume that

\(A_6 \) \(\rho \) is an even function and \(\epsilon_i \overset{d}{=} -\epsilon_i \).

Then one can show that \(\hat{\beta} \) is unbiased. As a consequence,

Theorem 6.

*Under assumptions \(A_1 - A_6 \), as \(p/n \to \kappa \) for some \(\kappa \in (0, 1) \) while \(n \to \infty \),

\[
\max_j d_{TV} \left(\mathcal{L} \left(\frac{\hat{\beta}_j - \beta_j^*}{\sqrt{\text{Var}(\hat{\beta}_j)}} \right), N(0, 1) \right) = o(1),
\]
Table of Contents

1. Background

2. Main Results and Examples

3. Assumptions and Proof Sketch

4. Numerical Results
Setup

Design matrix \mathbf{X}:

- (i.i.d. design): $X_{ij} \overset{i.i.d.}{\sim} F$;
- (partial Hadamard design): a matrix formed by a random set of p columns of a $n \times n$ Hadamard matrix.

Entry Distribution F:

- $F = N(0, 1)$;
- $F = t_2$.

Error Distribution $\mathcal{L}(\epsilon)$: ϵ_i are i.i.d. with

- $\epsilon_i \sim N(0, 1)$;
- $\epsilon_i \sim t_2$.

Lihua Lei (Qualifying Exam) Inference For High Dimensional M-estimates
Sample Size n: \{100, 200, 400, 800\};

$\kappa = \frac{p}{n}$: \{0.5, 0.8\};

Loss Function ρ: Huber loss with $k = 1.345$,

$$\rho(x) = \begin{cases} \frac{1}{2}x^2 & |x| \leq k \\ kx - \frac{k^2}{2} & |x| > k \end{cases}$$
For each set of parameters, we run 50 simulations with each consisting of the following steps:

(Step 1) Generate one design matrix X;
(Step 2) Generate the 300 error vectors ϵ;
(Step 3) Regress each $Y = \epsilon$ on the design matrix X and end up with 300 random samples of $\hat{\beta}_1$, denoted by $\hat{\beta}_1^{(1)}, \ldots, \hat{\beta}_1^{(300)}$;
(Step 4) Estimate the standard deviation of $\hat{\beta}_1$ by the sample standard error \hat{sd};
(Step 5) Construct a confidence interval $\mathcal{I}^{(k)} = \left[\hat{\beta}_1^{(k)} - 1.96 \cdot \hat{sd}, \hat{\beta}_1^{(k)} + 1.96 \cdot \hat{sd} \right]$ for each $k = 1, \ldots, 300$;
(Step 6) Calculate the empirical 95% coverage by the proportion of confidence intervals which cover the true $\beta^*_1 = 0$.

Lihua Lei (Qualifying Exam)

Inference For High Dimensional M-estimates
Asymptotic Normality of A Single Coordinate

Coverage of $\hat{\beta}_1$ ($\kappa = 0.5$)

Coverage of $\hat{\beta}_1$ ($\kappa = 0.8$)

Entry Dist. normal t(2) hadamard

Sample Size

Coverage

Lihua Lei (Qualifying Exam)
We establish the **coordinate-wise asymptotic normality** of the M-estimator for certain **fixed design matrices** under the **moderate p/n regime** under regularity conditions on $X, \mathcal{L}(\epsilon)$ and ρ but **no condition on β^***; We prove the result by using the novel approach Second-Order Poincaré Inequality (Chatterjee, 2009); We show that the regularity conditions are satisfied by a broad class of designs.
Future works for this project:

- Estimate $\text{Var}(\hat{\beta}_j)$
- Relax the assumptions on $L(\epsilon)$
- Relax the strong convexity of ρ
- Extend the results to GLM
Future works for this project:

- Estimate $\text{Var}(\hat{\beta}_j)$
- Relax the assumptions on $\mathcal{L}(\epsilon)$
- Relax the strong convexity of ρ
- Extend the results to GLM

Future works for my dissertation:

- Distributional properties in high dimensions
- Resampling methods in high dimensions
Thank You!

