STAT260 Problem Set 3

Due October 24th in class

Regular problems:

- 1. Prove the following invariance properties of Poincaré distributions:
 - If $X \sim p$ is σ -Poincaré and $f : \mathbb{R}^n \to \mathbb{R}^m$ is L-Lipschitz, then f(X) is $(L\sigma)$ -Poincaré.
 - If $X \in \mathbb{R}^n$, $Y \in \mathbb{R}^m$ are independent and both σ -Poincaré, then the ordered pair $(X, Y) \in \mathbb{R}^{n+m}$ is σ -Poincaré.
- 2. For a distribution p on \mathbb{R}^d , let $p_k(v) = \mathbb{E}_{x \sim p}[\langle x, v \rangle^k]$ and observe that p_k is a polynomial in v. Give sum-of-squares proofs for the following facts:
 - If $1 \le a \le b$ are both odd then $p_a(v)p_b(v) \preceq_{\text{sos}} p_{a-1}(v)p_{b+1}(v)$.
 - If $2 \le a \le b$ are both even then $p_a(v)p_b(v) \preceq_{\text{sos}} p_{a-2}(v)p_{b+2}(v)$.

[Hint: Start by showing that for every even r, $x_r - x^{r-1}y - xy^{r-1} + y^r \succeq_{sos} 0$ (as a polynomial in x and y), and similarly $x^r - x^{r-2}y^2 - x^2y^{r-2} + y^r \succeq_{sos} 0$. This may require some clever factorization/algebra.]

3. In class we defined sets \mathcal{G}^{\downarrow} and \mathcal{G}^{\uparrow} for an arbitrary loss $L(p, \theta)$. Here we consider the following generalized construction, that also incorporates a *bridge function* $B(p, \theta)$:

$$\mathcal{G}^{\downarrow}(\rho_1,\epsilon) \stackrel{\text{def}}{=} \{ p \mid B(r,\theta^*(p)) \le \rho_1 \text{ whenever } r \le \frac{p}{1-\epsilon} \},\tag{1}$$

$$\mathcal{G}^{\uparrow}(\rho_1, \rho_2, \epsilon) \stackrel{\text{def}}{=} \{ p \mid L(p, \theta) \le \rho_2 \text{ whenever } B(r, \theta) \le \rho_1 \text{ for some } r \le \frac{p}{1 - \epsilon}, \theta \}.$$
(2)

Show that the modulus of continuity of $\mathcal{G}^{\downarrow}(\rho_1, \epsilon) \cap \mathcal{G}^{\uparrow}(\rho_1, \rho_2, \epsilon)$ under L is at most ρ_2 .

- 4. Here we bound the modulus of continuity for linear classification. Given $(x, y) \sim p$ where $x \in \mathbb{R}^d$ and $y \in \{\pm 1\}$, Define $L(p, \theta) = \mathbb{P}_{(x,y)\sim p}[y \neq \operatorname{sign}(\langle x, \theta \rangle] \text{ and } B(p, \theta) = \mathbb{E}_{(x,y)\sim p}[\max(0, 1 y \langle x, \theta \rangle)]$, and let $\theta^*(p)$ be the minimizer of $B(p, \theta)$. Suppose that p satisfies the following two properties:
 - $\mathbb{E}_{(x,y)\sim p}[\max(0, 1 y\langle x, \theta^*(p)\rangle] \le (1 \epsilon)\rho_1$
 - Whenever $\mathbb{P}_{(x,y)\sim p}[y\langle x,\theta\rangle \leq \frac{1}{2}] \leq \epsilon + 2(1-\epsilon)\rho_1$ for some θ , then $\mathbb{P}_{(x,y)\sim p}[y\langle x,\theta\rangle \leq 0] \leq \rho_2$.

Show that $p \in \mathcal{G}^{\downarrow}(\rho_1, \epsilon) \cap \mathcal{G}^{\uparrow}(\rho_2, \epsilon)$.

[Remark: Note that the second condition is a type of tail bound, where in every direction where we are somewhat unlikely to be close to the boundary, we are very unlikely to cross the boundary entirely.]

- 5. Define the norm $||x||_{\mathcal{S}_k} = \max_{||v||_2 \leq 1, ||v||_0 \leq k} \langle x, v \rangle$.
 - (a) What is the dual norm to $\|\cdot\|_{\mathcal{S}_k}$?
 - (b) Show that if x and y both have at most k non-zero entries, then $||x y||_{\mathcal{S}_{2k}} = ||x y||_2$.
 - (c) Show that any distribution that is (ρ, ϵ) -resilient in the ℓ_2 -norm is also (ρ, ϵ) -resilient in the S_k -norm.

Challenge problems (turn in as a separate document typset in LaTeX):

6. Construct a distribution that is $(\sqrt{\epsilon}, \epsilon)$ -resilient in the \mathcal{S}_k -norm for all $\epsilon < 1/4$, but not $(\rho, 1/10)$ -resilient in the ℓ_2 -norm for any $\rho < \Omega(k^{0.1})$.

[The constants 1/4, 1/10, 0.1 are all arbitrarily chosen, the point is to show a polynomial separation between S_k and ℓ_2 for some distribution. Note that your construction will likely need to have d/k going to ∞ as $k \to \infty$.]

7. Suppose that $X \sim p$ is σ -Poincaré and f is L-Lipschitz. Show that f(X) is sub-exponential with parameter $\mathcal{O}(\sigma L)$.

[*Hint: Define* $u(\lambda) = \mathbb{E}[e^{\lambda f(x)}]$ and compare to $\operatorname{Var}[e^{\lambda f(x)/2}]$.]