[Lecture 9]

0.0.1 Approximate Eigenvectors in Other Norms

Algorithm ?? is specific to the ℓ_{2}-norm. Let us suppose that we care about recovering an estimate $\hat{\mu}$ such that $\|\mu-\hat{\mu}\|$ is small in some norm other than ℓ_{2} (such as the ℓ_{1}-norm, which may be more appropriate for some combinatorial problems). It turns out that an analog of bounded covariance is sufficient to enable estimation with the typical $\mathcal{O}(\sigma \sqrt{\epsilon})$ error, as long as we can approximately solve the analogous eigenvector problem. To formalize this, we will make use of the dual norm:
Definition 0.1. Given a norm $\|\cdot\|$, the dual norm $\|\cdot\|_{*}$ is defined as

$$
\begin{equation*}
\|u\|_{*}=\sup _{\|v\|_{2} \leq 1}\langle u, v\rangle . \tag{1}
\end{equation*}
$$

As some examples, the dual of the ℓ_{2}-norm is itself, the dual of the ℓ_{1}-norm is the ℓ_{∞}-norm, and the dual of the ℓ_{∞}-norm is the ℓ_{1}-norm. An important property (we omit the proof) is that the dual of the dual is the original norm:
Proposition 0.2. If $\|\cdot\|$ is a norm on a finite-dimensional vector space, then $\|\cdot\|_{* *}=\|\cdot\|$.
For a more complex example: let $\|v\|_{(k)}$ be the sum of the k largest coordinates of v (in absolute value). Then the dual of $\|\cdot\|_{(k)}$ is $\max \left(\|u\|_{\infty},\|u\|_{1} / k\right)$. This can be seen by noting that the vertices of the constraint set $\left\{u \mid\|u\|_{\infty} \leq 1,\|u\|_{1} \leq k\right\}$ are exactly the k-sparse $\{-1,0,+1\}$-vectors.

Let $\mathcal{G}_{\operatorname{cov}}(\sigma,\|\cdot\|)$ denote the family of distributions satisfying $\max _{\|v\|_{*} \leq 1} v^{\top} \operatorname{Cov}_{p}[X] v \leq \sigma^{2}$. Then $\mathcal{G}_{\text {cov }}$ is resilient exactly analogously to the ℓ_{2}-case:
Proposition 0.3. If $p \in \mathcal{G}_{\mathrm{cov}}(\sigma,\|\cdot\|)$ and $r \leq \frac{p}{1-\epsilon}$, then $\|\mu(r)-\mu(p)\| \leq \sqrt{\frac{2 \epsilon}{1-\epsilon}} \sigma$. In other words, all distributions in $\mathcal{G}_{\operatorname{cov}}(\sigma,\|\cdot\|)$ are $(\epsilon, \mathcal{O}(\sigma \sqrt{\epsilon}))$-resilient.
Proof. We have that $\|\mu(r)-\mu(p)\|=\langle\mu(r)-\mu(p), v\rangle$ for some vector v with $\|v\|_{*}=1$. The result then follows by resilience for the one-dimensional distribution $\langle X, v\rangle$ for $X \sim p$.

When $p^{*} \in \mathcal{G}_{\text {cov }}(\sigma,\|\cdot\|)$, we will design efficient algorithms analogous to Algorithm ??. The main difficulty is that in norms other than ℓ_{2}, it is generally not possible to exactly solve the optimization problem $\max _{\|v\|_{*} \leq 1} v^{\top} \hat{\Sigma}_{c} v$ that is used in Algorithm ??. We instead make use of a κ-approximate oracle:
Definition 0.4. A function $\mathcal{A}(\Sigma)$ is a κ-approximate oracle if for all $\Sigma, M=\mathcal{A}(\Sigma)$ is a positive semidefinite matrix satisfying

$$
\begin{equation*}
\langle M, \Sigma\rangle \geq \sup _{\|v\|_{*} \leq 1} v^{\top} \Sigma v, \text { and }\left\langle M, \Sigma^{\prime}\right\rangle \leq \kappa \sup _{\|v\|_{*} \leq 1} v^{\top} \Sigma^{\prime} v \text { for all } \Sigma^{\prime} \succeq 0 \tag{2}
\end{equation*}
$$

Thus a κ-approximate oracle over-approximates $\left\langle v v^{\top}, \Sigma\right.$ for the maximizing vector v on Σ, and it underapproximates $\left\langle v v^{\top}, \Sigma^{\prime}\right\rangle$ within a factor of κ for all $\Sigma^{\prime} \neq \Sigma$. Given such an oracle, we have the following analog to Algorithm ??:

```
Algorithm 1 FilterNorm
    Initialize weights \(c_{1}, \ldots, c_{n}=1\).
    Compute the empirical mean \(\hat{\mu}_{c}\) of the data, \(\hat{\mu}_{c} \stackrel{\text { def }}{=}\left(\sum_{i=1}^{n} c_{i} x_{i}\right) /\left(\sum_{i=1}^{n} c_{i}\right)\).
    Compute the empirical covariance \(\hat{\Sigma}_{c} \stackrel{\text { def }}{=} \sum_{i=1}^{n} c_{i}\left(x_{i}-\hat{\mu}_{c}\right)\left(x_{i}-\hat{\mu}_{c}\right)^{\top} / \sum_{i=1}^{n} c_{i}\).
    Let \(M=\mathcal{A}\left(\hat{\Sigma}_{c}\right)\) be the output of a \(\kappa\)-approximate oracle.
    If \(\left\langle M, \hat{\Sigma}_{c}\right\rangle \leq 20 \kappa \sigma^{2}\), output \(q(c)\).
    Otherwise, let \(\tau_{i}=\left(x_{i}-\hat{\mu}_{c}\right)^{\top} M\left(x_{i}-\hat{\mu}_{c}\right)\), and update \(c_{i} \leftarrow c_{i} \cdot\left(1-\tau_{i} / \tau_{\max }\right)\), where \(\tau_{\max }=\max _{i} \tau_{i}\).
    Go back to line 2 .
```

Algorithm 1 outputs an estimate of the mean with error $\mathcal{O}(\sigma \sqrt{\kappa \epsilon})$. The proof is almost exactly the same as Algorithm ??; the main difference is that we need to ensure that $\langle\Sigma, M\rangle$, the inner product of M with the true covariance, is not too large. This is where we use the κ-approximation property. We leave the detailed proof as an exercise, and focus on how to construct a κ-approximate oracle \mathcal{A}.

Semidefinite programming. As a concrete example, suppose that we wish to estimate μ in the ℓ_{1}-norm $\|v\|=\sum_{j=1}^{d}\left|v_{j}\right|$. The dual norm is the ℓ_{∞}-norm, and hence our goal is to approximately solve the optimization problem

$$
\begin{equation*}
\operatorname{maximize} v^{\top} \Sigma v \text { subject to }\|v\|_{\infty} \leq 1 \tag{3}
\end{equation*}
$$

The issue with (3) is that it is not concave in v because of the quadratic function $v^{\top} \Sigma v$. However, note that $v^{\top} \Sigma v=\left\langle\Sigma, v v^{\top}\right\rangle$. Therefore, if we replace v with the variable $M=v v^{\top}$, then we can re-express the optimization problem as

$$
\begin{equation*}
\operatorname{maximize}\langle\Sigma, M\rangle \text { subject to } M_{j j} \leq 1 \text { for all } \mathrm{j}, M \succeq 0, \operatorname{rank}(M)=1 \tag{4}
\end{equation*}
$$

Here the first constraint is a translation of $\|v\|_{\infty} \leq 1$, while the latter two constrain M to be of the form $v v^{\top}$.
This is almost convex in M, except for the constraint $\operatorname{rank}(M)=1$. If we omit this constraint, we obtain the optimization

$$
\begin{align*}
\operatorname{maximize} & \langle\Sigma, M\rangle \\
\text { subject to } & M_{j j}=1 \text { for all } j, \\
& M \succeq 0 \tag{5}
\end{align*}
$$

Note that here we replace the constraint $M_{j j} \leq 1$ with $M_{j j}=1$; this can be done because the maximizer of (5) will always have $M_{j j}=1$ for all j. For brevity we often write this constraint as $\operatorname{diag}(M)=1$.

The problem (5) is a special instance of a semidefinite program and can be solved in polynomial time (in general, a semidefinite program allows arbitrary linear inequality or positive semidefinite constraints between linear functions of the decision variables; we discuss this more below).

The optimizer M^{*} of (5) will always satisfy $\left\langle\Sigma, M^{*}\right\rangle \geq \sup _{\|v\|_{\infty} \leq 1} v^{\top} \Sigma v$ because and v with $\|v\|_{\infty} \leq 1$ yields a feasible M. The key is to show that it is not too much larger than this. This turns out to be a fundamental fact in the theory of optimization called Grothendieck's inequality:
Theorem 0.5. If $\Sigma \succeq 0$, then the value of (5) is at most $\frac{\pi}{2} \sup _{\|v\|_{\infty} \leq 1} v^{\top} \Sigma v$.
See ? for a very well-written exposition on Grothendieck's inequality and its relation to optimization algorithms. In that text we also see that a version of Theorem 0.5 holds even when Σ is not positive semidefinite or indeed even square. Here we produce a proof based on [todo: cite] for the semidefinite case.

Proof of Theorem 0.5. The proof involves two key relations. To describe the first, given a matrix X let $\arcsin [X]$ denote the matrix whose i, j entry is $\arcsin \left(X_{i j}\right)$ (i.e. we apply \arcsin element-wise). Then we have (we will show this later)

$$
\begin{equation*}
\max _{\|v\|_{\infty} \leq 1} v^{\top} \Sigma v=\max _{X \succeq 0, \operatorname{diag}(X)=1} \frac{2}{\pi}\langle\Sigma, \arcsin [X]\rangle \tag{6}
\end{equation*}
$$

The next relation is that

$$
\begin{equation*}
\arcsin [X] \succeq X \tag{7}
\end{equation*}
$$

Together, these imply the approximation ratio, because we then have

$$
\begin{equation*}
\max _{M \succeq 0, \operatorname{diag}(M)=1}\langle\Sigma, M\rangle \leq \max _{M \succeq 0, \operatorname{diag}(M)=1}\langle\Sigma, \arcsin [M]\rangle=\frac{\pi}{2} \max _{\|v\|_{\infty} \leq 1} v^{\top} \Sigma v \tag{8}
\end{equation*}
$$

We will therefore focus on establishing (6) and (7).
To establish (6), we will show that any X with $X \succeq 0, \operatorname{diag}(X)=1$ can be used to produce a probability distribution over vectors v such that $\mathbb{E}\left[v^{\top} \Sigma v\right]=\frac{2}{\pi}\langle\Sigma, \arcsin [X]\rangle$.

First, by Graham/Cholesky decomposition we know that there exist vectors u_{i} such that $M_{i j}=\left\langle u_{i}, u_{j}\right\rangle$ for all i, j. In particular, $M_{i i}=1$ implies that the u_{i} have unit norm. We will then construct the vector v by taking $v_{i}=\operatorname{sign}\left(\left\langle u_{i}, g\right\rangle\right)$ for a Gaussian random variable $g \sim \mathcal{N}(0, I)$.

We want to show that $\mathbb{E}_{g}\left[v_{i} v_{j}\right]=\frac{2}{\pi} \arcsin \left(\left\langle u_{i}, u_{j}\right\rangle\right)$. For this it helps to reason in the two-dimensional space spanned by v_{i} and v_{j}. Then $v_{i} v_{j}=-1$ if the hyperplane induced by g cuts between u_{i} and u_{j}, and +1 if it does not. Letting θ be the angle between u_{i} and u_{j}, we then have $\mathbb{P}\left[v_{j} v_{j}=-1\right]=\frac{\theta}{\pi}$ and hence

$$
\begin{equation*}
\mathbb{E}_{g}\left[v_{i} v_{j}\right]=\left(1-\frac{\theta}{\pi}\right)-\frac{\theta}{\pi}=\frac{2}{\pi}\left(\frac{\pi}{2}-\theta\right)=\frac{2}{\pi} \arcsin \left(\left\langle u_{i}, u_{j}\right\rangle\right) \tag{9}
\end{equation*}
$$

as desired. Therefore, we can always construct a distribution over v for which $\mathbb{E}\left[v^{\top} \Sigma v\right]=\frac{2}{\pi}\langle\Sigma, \arcsin [M]\rangle$, hence the right-hand-side of (6) is at most the left-hand-side. For the other direction, note that the maximizing v on the left-hand-side is always a $\{-1,+1\}$ vector by convexity of $v^{\top} \Sigma v$, and for any such vector we have $\frac{2}{\pi} \arcsin \left[v v^{\top}\right]=v v^{\top}$. Thus the left-hand-side is at most the right-hand-side, and so the equality (6) indeed holds.

We now turn our attention to establishing (7). For this, let $X^{\odot k}$ denote the matrix whose i, j entry is $X_{i j}^{k}$ (we take element-wise power). We require the following lemma:
Lemma 0.6. For all $k \in\{1,2, \ldots\}$, if $X \succeq 0$ then $X^{\odot k} \succeq 0$.
Proof. The matrix $X^{\odot k}$ is a submatrix of $X^{\otimes k}$, where $\left(X^{\otimes k}\right)_{i_{1} \cdots i_{k}, j_{1} \cdots j_{k}}=X_{i_{1}, j_{1}} \cdots X_{i_{k}, j_{k}}$. We can verify that $X^{\otimes k} \succeq 0$ (its eigenvalues are $\lambda_{i_{1}} \cdots \lambda_{i_{k}}$ where λ_{i} are the eigenvalues of X), hence so is $X^{\odot k}$ since submatrices of PSD matrices are PSD.

With this in hand, we also make use of the Taylor series for $\arcsin (z): \arcsin (z)=\sum_{n=0}^{\infty} \frac{(2 n)!}{\left(2^{n} n!\right)^{2}} \frac{z^{2 n+1}}{2 n+1}=$ $z+\frac{z^{3}}{6}+\cdots$. Then we have

$$
\begin{equation*}
\arcsin [X]=X+\sum_{n=1}^{\infty} \frac{(2 n)!}{\left(2^{n} n!\right)^{2}} \frac{1}{2 n+1} X^{\odot(2 n+1)} \succeq X \tag{10}
\end{equation*}
$$

as was to be shown. This completes the proof.
Alternate proof (by Mihaela Curmei): We can also show that $X^{\odot k} \succeq 0$ more directly. Specifically, we will show that if $A, B \succeq 0$ then $A \odot B \succeq 0$, from which the result follows by induction. To show this let $A=\sum_{i} \lambda_{i} u_{i} u_{i}^{\top}$ and $B=\sum_{j} \nu_{j} v_{j} v_{j}^{\top}$ and observe that

$$
\begin{align*}
A \odot B & =\left(\sum_{i} \lambda_{i} u_{i} u_{i}^{\top}\right) \odot\left(\sum_{j} \nu_{j} v_{j} v_{j}^{\top}\right) \tag{11}\\
& =\sum_{i, j} \lambda_{i} \nu_{j}\left(u_{i} u_{i}^{\top}\right) \odot\left(v_{j} v_{j}^{\top}\right) \tag{12}\\
& =\sum_{i, j} \underbrace{\lambda_{i} \nu_{j}}_{\geq 0} \underbrace{\left(u_{i} \odot v_{j}\right)\left(u_{i} \odot v_{j}\right)^{\top}}_{\succeq 0}, \tag{13}
\end{align*}
$$

from which the claim follows. Here the key step is that for rank-one matrices the \odot operation behaves nicely: $\left(u_{i} u_{i}^{\top}\right) \odot\left(v_{j} v_{j}^{\top}\right)=\left(u_{i} \odot v_{j}\right)\left(u_{i} \odot v_{j}\right)^{\top}$.

