
[Lecture 8]

0.1 Efficient Algorithms

We now turn our attention to efficient algorithms. Recall that previously we considered minimum distance

functionals projecting onto sets G andM under distances TV and T̃V. Here we will show how to approximately
project onto the set Gcov(σ), the family of bounded covariance distributions, under TV distance. The basic
idea is that if the true distribution p∗ has bounded covariance, and p̃ does not, the largest eigenvector of
Covp̃[X] must be well-aligned with the mean of the bad points, and thus we can use this to remove the bad
points. If on the other hand p̃ has bounded covariance, then its mean must be close to p∗ by our previous
modulus bounds and so we are already done.

To study efficient computation we need a way of representing the distributions p̃ and p∗. To do this we
will suppose that p̃ is the empirical distribution over n points x1, . . . , xn, while p∗ is the empirical distribution
over some subset S of these points with |S| ≥ (1− ε)n. Thus in particular p∗ is an ε-deletion of p̃.

Before we assumed that TV(p∗, p̃) ≤ ε, but taking p′ = min(p∗,p̃)
1−TV(p∗,p̃) , we have p′ ≤ p̃

1−ε and ‖Covp′ [X]‖ ≤
σ2

1−ε ≤ 2σ2 whenever ‖Covp∗ [X]‖ ≤ σ2. Therefore, taking p∗ ≤ p̃
1−ε is equivalent to the TV corruption model

from before for our present purposes.
We will construct an efficient algorithm that, given p̃, outputs a distribution q such that TV(q, p∗) ≤ O(ε)

and ‖Covq[X]‖2 ≤ O(σ2). This is similar to the minimum distance functional, in that it finds a distribution
close to p∗ with bounded covariance; the main difference is that q need not be the projection of p̃ onto Gcov,
and also the covariance of q is bounded by O(σ2) instead of σ2. However, the modulus of continuity bound
from before says that any distribution q that is near p∗ and has bounded covariance will approximate the
mean of p∗. Specifically, we have

‖µ(q)− µ(p∗)‖22 ≤ O(max(‖Covq[X]‖, ‖Covp∗ [X]‖) · TV(p∗, q)) = O(σ2ε). (1)

We will show the following:

Proposition 0.1. Suppose p̃ and p∗ are empirical distributions as above with p∗ ≤ p̃/(1− ε), and further
suppose that ‖Covp∗ [X]‖ ≤ σ2. Then given p̃ (but not p∗), there is an algorithm with runtime poly(n, d) that
outputs a q with TV(p∗, q) ≤ ε and ‖Covq[X]‖ ≤ O(σ2). In particular, ‖µ(p∗)− µ(q)‖2 = O(σ

√
ε).

Note that the conclusion ‖µ(p∗)− µ(q)‖2 ≤ O(σ
√
ε) follows from the modulus bound on Gcov(σ) together

with the property TV(p∗, q) ≤ ε.
The algorithm, FilterL2, underlying Proposition 0.1 is given below; it maintains a weighted distribution

q(c), which places weight ci/
∑n
j=1 cj on point xi. It then computes the weighted mean and covariance,

projects onto the top eigenvector, and downweights points with large projection.

Algorithm 1 FilterL2

1: Input: x1, . . . , xn ∈ Rd.
2: Initialize weights c1, . . . , cn = 1.

3: Compute the empirical mean µ̂c of the data, µ̂c
def
= (

∑n
i=1 cixi)/(

∑n
i=1 ci).

4: Compute the empirical covariance Σ̂c
def
=
∑n
i=1 ci(xi − µ̂c)(xi − µ̂c)>/

∑n
i=1 ci.

5: Let v be the maximum eigenvector of Σ̂c, and let σ̂2
c = v>Σ̂cv.

6: If σ̂2
c ≤ 20σ2, output q(c).

7: Otherwise, let τi = 〈xi − µ̂c, v〉2, and update ci ← ci · (1− τi/τmax), where τmax = maxi τi.
8: Go back to line 3.

The factor τmax in the update ci ← ci · (1− τi/τmax) is so that the weights remain positive; the specific
factor is unimportant and the main property required is that each point is downweighted proportionally to τi.
Note also that Algorithm 1 must eventually terminate because one additional weight ci is set to zero in every
iteration of the algorithm.

The intuition behind Algorithm 1 is as follows: if the empirical variance σ̂2
c is much larger than the

variance σ2 of the good data, then the bad points must on average be very far away from the empirical mean
(i.e., τi must be large on average for the bad points).

1

More specifically, note that τi = 〈xi − µ̂c, v∗〉2. Let τ̃i = 〈xi − µ, v∗〉2, and imagine for now that τi ≈ τ̃i.
We know that the average of τ̃i over the good points is at most σ2, since τ̃i is the variance along the projection
v∗ and ‖Covp∗ [X]‖ ≤ σ2. Thus if the overall average of the τi is large (say 20σ2), it must be on account of
the bad points. But since there are not that many bad points, their average must be quite large–on the order
of σ2/ε. Thus they should be easy to separate from the good points. This is depicted in Figure 1.

σ2

σ̂2
c

bad datagood data

(distance ≈ σ̂2
c/ε)

Figure 1: Intuition behind Algorithm 1. Because there is only an ε-fraction of bad data, it must lie far away
to increase the variance by a constant factor.

This is the basic idea behind the proof, but there are a couple issues with this:

• The assumption that τ̃i ≈ τi is basically an assumption that µ ≈ µ̂c (which is what we are trying to
show in the first place!).

• The bad points are not deterministically larger than the good points; they are only separated in expected
value.

• There are many fewer bad points than good points, so they are harder to find.

We will deal with the first issue by showing that µ is close enough to µ̂c for the algorithm to make progress.
The second issue is why we need to do soft downweighting rather than picking a hard threshold and removing
all points with τi above the threshold. We will resolve the third issue by showing that we always remove
more mass ci from the bad points than from the good points when we update ci. Intuitively, while there are
only ε times as many bad points as good points, this is balanced against the fact that the mean of the bad
points is 1/ε times as large as the mean of the good points.

We next put this intuition together into a formal proof.

Proof of Proposition 0.1. As above, for weights ci ∈ [0, 1], let q(c) be the distribution that assigns weight
ci/
∑
j cj to point xi. Thus when ci = 1 for all i, we have q(c) = p̃. Our hope is that as the algorithm

progresses q(c) approaches p∗ or at least has small covariance. We will establish the following invariant:

TV(q(c), p∗) ≤ ε

1− ε
for all weight vectors c used during the execution of Algorithm 1. (I1)

We will do this by proving the following more complex invariant, which we will later show implies (I1):∑
i∈S

(1− ci) ≤
∑
i6∈S

(1− ci) (I2)

The invariant (I2) says that the total probability mass removed from the good points is less than the
total probability mass removed from the bad points. A key lemma relates (I2) to the τi:

Lemma 0.2. If (I2) and
∑
i∈S ciτi ≤

∑
i 6∈S ciτi, then it continues to hold after the update c′i = ci(1−τi/τmax).

2

Proof. For any set T , we have∑
i∈T

1− c′i =
∑
i∈T

(1− ci) +
∑
i∈T

(ci − c′i) =
∑
i∈T

(1− ci) +
1

τmax

∑
i∈T

ciτi. (2)

Applying this for T = S and T = [n]\S yields the lemma.

Thus our main job is to show that
∑
i∈S ciτi ≤

∑
i∈S ciτi. Equivalently, we wish to show that

∑
i∈S ciτi ≤

1
2

∑n
i=1 ciτi. For this, the following bound is helpful:∑

i∈S
ciτi =

∑
i∈S

ci〈xi − µ̂c, v∗〉2 (3)

≤
∑
i∈S
〈xi − µ̂c, v∗〉2 (4)

= (1− ε)nEp∗ [〈xi − µ̂c, v∗〉2] (5)

= (1− ε)n · (v∗)>(Covp∗ [X] + (µ− µ̂c)(µ− µ̂c)>)(v∗) (6)

≤ (1− ε)n · (‖Covp∗ [X]‖+ ‖µ− µ̂c‖22). (7)

Here the second-to-last step uses the fact that for any θ, E[(X − θ)(X − θ)>] = Cov[X] + (θ − µ)(θ − µ)>.
Next note that ‖Covp∗‖ ≤ σ2 while ‖µ− µ̂c‖22 ≤ 8ε

1−2εσ
2
c by the modulus of continuity bound combined

with the fact that p∗, q(c) ∈ Gcov(σ̂) and TV(p∗, q(c)) ≤ ε
1−ε . Therefore, we have∑

i∈S
ciτi ≤ (1− ε)σ2n+

8ε(1− ε)
1− 2ε

σ̂2
cn. (8)

On the other hand, we have

n∑
i=1

ciτi = (

n∑
i=1

ci)‖Covq(c)[X]‖ = (

n∑
i=1

ci)σ̂
2
c ≥ (1− 2ε)σ̂2

cn, (9)

where the final inequality uses the fact that we have so far removed more mass from bad points than good
points and hence at most 2ε mass in total. Recalling that we wish to show that (8) is at most half of (9), we
require that

(1− 2ε)σ̂2
c ≥ 2(1− ε)σ2 +

16ε(1− ε)
1− 2ε

σ̂2
c , (10)

which upon re-arrangement yields

σ̂2
c ≥

2(1− ε)(1− 2ε)

1− 12ε+ 12ε2
σ2 (11)

Since σ̂2
c ≥ 20σ2 whenever the algorithm does not terminate, this holds as long as ε ≤ 1

12 (then the constant
in front of σ2 is 55

3 < 20). This shows that (I2) holds throughout the algorithm.
The one remaining detail is to prove that (I2) implies (I1). We wish to show that TV(p∗, q(c)) ≤ ε

1−ε . We

use the following formula for TV: TV(p, q) =
∫

max(q(x)− p(x), 0)dx. Let β be such that
∑n
i=1 ci = (1−β)n.

Then we have

TV(p∗, q(c)) =
∑
i∈S

max
(ci

(1− β)n
− 1

(1− ε)n
, 0
)

+
∑
i 6∈S

ci
(1− β)n

. (12)

If β ≤ ε, then the first sum is zero while the second sum is at most ε
1−β ≤

ε
1−ε . If on the other hand β > ε,

we will instead use the equality obtained by swapping p and q, which yields

TV(p∗, q(c)) =
∑
i∈S

max
(1

(1− ε)n
− ci

(1− β)n
, 0
)

(13)

=
1

(1− ε)(1− β)n

∑
i∈S

max((1− β)(1− ci) + (ε− β)ci, 0). (14)

3

Since (ε − β)ci ≤ 0 and
∑
i∈S(1 − ci) ≤ εn, this yields a bound of (1−β)ε

(1−ε)(1−β) = ε
1−ε . We thus obtain the

desired bound no matter the value of β, so TV(p∗, q(c)) ≤ ε
1−ε whenever (I2) holds. This completes the

proof.

4

	Efficient Algorithms

