
[Lectures 6-7]

0.0.1 Expanding the Set

In Section ?? we saw how to resolve the issue with TV projection by relaxing to a weaker distance T̃V. We
will now study an alternate approach, based on expanding the destination set G to a larger set M. For
this approach we will need to reference the “true empirical distribution” p∗n. What we mean by this is the
following: Whenever TV(p∗, p̃) ≤ ε, we know that p∗ and p̃ are identical except for some event E of probability
ε. Therefore we can sample from p̃ as follows:

1. Draw a sample from X ∼ p∗.

2. Check if E holds; if it does, replace X with a sample from the conditional distribution p̃|E .

3. Otherwise leave X as-is.

Thus we can interpret a sample from p̃ as having a 1 − ε chance of being “from” p∗. More generally, we
can construct the empirical distribution p̃n by first constructing the empirical distribution p∗n coming from
p∗, then replacing Binom(n, ε) of the points with samples from p̃|E . Formally, we have created a coupling

between the random variables p∗n and p̃n such that TV(p∗n, p̃n) is distributed as 1
nBinom(n, ε).

Let us return to expanding the set from G to M. For this to work, we need three properties to hold:

• M is large enough: minq∈M TV(q, p∗n) is small with high probability.

• The empirical loss L(p∗n, θ) is a good approximation to the population loss L(p∗, θ).

• The modulus is still bounded: minp,q∈M:TV(p,q)≤2ε L(p, θ∗(q)) is small.

In fact, it suffices for M to satisfy a weaker property; we only need the “generalized modulus” to be small
relative to some G′ ⊂M:

Proposition 0.1. For a set G′ ⊂M, define the generalized modulus of continuity as

m(G′,M, 2ε)
def
= min

p∈G′,q∈M:TV(p,q)≤2ε
L(p, θ∗(q)). (1)

Assume that the true empirical distribution p∗n lies in G′ with probability 1− δ. Then the minimum distance

functional projecting under TV onto M has empirical error L(p∗n, θ̂) at most m(G′,M, 2ε′) with probability at
least 1− δ − P[Binom(ε, n) ≥ ε′n].

Proof. Let ε′ = TV(p∗n, p̃n), which is Binom(ε, n)-distributed. If p∗n lies in G′, then since G′ ⊂ M we know
that p̃n has distance at most ε′ fromM, and so the projected distribution q satisfies TV(q, p̃n) ≤ ε′ and hence

TV(q, p∗n) ≤ 2ε′. It follows from the definition that L(p∗n, θ̂) = L(p∗n, θ
∗(q)) ≤ m(G′,M, 2ε′).

A useful bound on the binomial tail is that P[Binom(ε, n) ≥ 2εn] ≤ exp(−εn/3). In particular the empirical
error is at most m(G′,M, 4ε) with probability at least 1− δ − exp(−εn/3).

Application: bounded kth moments. First suppose that the distribution p∗ has bounded kth moments,
i.e. Gmom,k(σ) = {p | ‖p‖ψ ≤ σ}, where ψ(x) = xk. When k > 2, the empirical distribution p∗n will not have
bouned kth moments until n ≥ Ω(dk/2). This is because if we take a single sample x1 ∼ p and let v be a
unit vector in the direction of x1 − µ, then Ex∼p∗n [〈x − µ, v〉k] ≥ 1

n‖x1 − µ‖
k
2 ' dk/2/n, since the norm of

‖x1 − µ‖2 is typically
√
d.

Consequently, it is necessary to expand the set and we will choose G′ =M = GTV(ρ, ε) for ρ = O(σε1−1/k)
to be the set of resilience distributions with appropriate parameters ρ and ε. We already know that the
modulus of M is bounded by O(σε1−1/k), so the hard part is showing that the empirical distribution p∗n lies
in M with high probability.

As noted above, we cannot hope to prove that p∗n has bounded moments except when n = Ω(dk/2), which
is too large. We will instead show that certain truncated moments of p∗n are bounded as soon as n = Ω(d),
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and that these truncated moments suffice to show resilience. Specifically, if ψ(x) = xk is the Orlicz function
for the kth moments, we will define the truncated function

ψ̃(x) =

{
xk : x ≤ x0

kxk−10 (x− x0) + xk0 : x > x0
(2)

In other words, ψ̃ is equal to ψ for x ≤ x0, and is the best linear lower bound to ψ for x > x0. Note that ψ̃ is
L-Lipschitz for L = kxk−10 . We will eventually take x0 = (kk−1ε)−1/k and hence L = (1/ε)(k−1)/k. Using a
symmetrization argument, we will bound the truncated sup‖v‖2≤1 Ep∗n [ψ̃(|〈x− µ, v〉|/σ)].

Proposition 0.2. Let X1, . . . , Xn ∼ p∗, where p∗ ∈ Gmom,k(σ). Then,

EX1,...,Xn∼p∗

[∣∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

ψ̃

(
|〈Xi − µ, v〉|

σ

)
− U(v)

∣∣∣∣k] ≤ O(2L

√
dk

n

)k
, (3)

where L = kxk−10 and U(v) is a function satisfying U(v) ≤ 1 for all v.

Before proving Proposition 0.2, let us interpret its significance. Take x0 = (kk−1ε)−1/k and hence L =
ε1−1/k. Take n large enough so that the right-hand-side of (3) is at most 1, which requires n ≥ Ω(kd/ε2−2/k).
We then obtain a high-probability bound on the ψ̃-norm of p∗n, i.e. the ψ̃-norm is at most O(δ−1/k) with
probability 1 − δ. This implies that p∗n is resilient with parameter ρ = σεψ̃−1(O(δ−1/k)/ε) = 2σε1−1/k. A
useful bound on ψ̃−1 is ψ̃(−1)(z) ≤ x0 + z/L, and since x0 ≤ (1/ε)−1/k and L = (1/ε)(k−1)/k in our case, we
have

ρ ≤ O(σε1−1/kδ−1/k) with probability 1− δ.

This matches the population-bound of O(σε1−1/k), and only requires kd/ε2−2/k samples, in contrast to the
d/ε2 samples required before. Indeed, this sample complexity dependence is optimal (other than the factor of
k); the only drawback is that we do not get exponential tails (we instead obtain tails of δ−1/k, which is worse
than the

√
log(1/δ) from before).

Now we discuss some ideas that are needed in the proof. We would like to somehow exploit the fact that ψ̃
is L-Lipschitz to prove concentration. We can do so with the following keystone result in probability theory:

Theorem 0.3 (Ledoux-Talagrand Contraction). Let φ : R→ R be an L-Lipschitz function such that φ(0) = 0.
Then for any convex, increasing function g and Rademacher variables ε1:n ∼ {±1}, we have

Eε1:n [g(sup
t∈T

n∑
i=1

εiφ(ti))] ≤ Eε1:n [g(L sup
t∈T

n∑
i=1

εiti)]. (4)

Let us interpret this result. We should think of the ti as a quantity such as 〈xi − µ, v〉, where abstracting
to ti yields generality and notational simplicity. Theorem 0.3 says that if we let Y = supt∈T

∑
i εiφ(ti) and

Z = L supt∈T
∑
i εiti, then E[g(Y )] ≤ E[g(Z)] for all convex increasing functions g. When this holds we say

that Y stochastically dominates Z in second order ; intuitively, it is equivalent to saying that Z has larger
mean than Y and greater variation around its mean. For distributions supported on just two points, we can
formalize this as follows:

Lemma 0.4 (Two-point stochastic dominance). Let Y take values y1 and y2 with probability 1
2 , and Z take

values z1 and z2 with probability 1
2 . Then Z stochastically dominates Y (in second order) if and only if

z1 + z2
2

≥ y1 + y2
2

and max(z1, z2) ≥ max(y1, y2). (5)

Proof. Without loss of generality assume z2 ≥ z1 and y2 ≥ y1. We want to show that E[g(Y )] ≤ E[g(Z)] for
all convex increasing g if and only if (5) holds. We first establish necessity of (5). Take g(x) = x, then we
require E[Y ] ≤ E[Z], which is the first condition in (5). Taking g(x) = max(x− z2, 0) yields E[g(Z)] = 0 and
E[g(Y )] ≥ 1

2 max(y2 − z2, 0), so E[g(Y )] ≤ E[g(Z)] implies that y2 ≤ z2, which is the second condition in (5).
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We next establish sufficiency, by conjuring up appropriate weights for Jensen’s inequality. We have

y2 − z1
z2 − z1

g(z2) +
z2 − y2
z2 − z1

g(z1) ≥ g
(z2(y2 − z1) + z1(z2 − y2)

z2 − z1

)
= g(y2), (6)

z2 − y2
z2 − z1

g(z2) +
y2 − z1
z2 − z1

g(z1) ≥ g
(z2(z2 − y2) + z1(y2 − z1)

z2 − z1

)
= g(z1 + z2 − y2) ≥ g(y1). (7)

Here the first two inequalities are Jensen while the last is by the first condition in (5) together with the
monotonicity of g. Adding these together yields g(z2) + g(z1) ≥ g(y2) + g(y1), or E[g(Z)] ≥ E[g(Y )], as
desired. We need only check that the weights y2−z1

z2−z1 and z2−y2
z2−z1 are positive. The second weight is positive

by the assumption z2 ≥ y2. The first weight could be negative if y2 < z1, meaning that both y1 and y2 are
smaller than both z1 and z2. But in this case, the inequality E[g(Y )] ≤ E[g(Z)] trivially holds by monotonicity
of g. This completes the proof.

We are now ready to prove Theorem 0.3.

Proof of Theorem 0.3. Without loss of generality we may take L = 1. Our strategy will be to iteratively
apply an inequality for a single εi to replace all the φ(ti) with ti one-by-one. The inequality for a single εi is
the following:

Lemma 0.5. For any 1-Lipschitz function φ with φ(0) = 0, any collection T of ordered pairs (a, b), and any
convex increasing function g, we have

Eε∼{−1,+1}[g( sup
(a,b)∈T

a+ εφ(b))] ≤ Eε∼{−1,+1}[g( sup
(a,b)∈T

a+ εb)]. (8)

To prove this, let (a+, b+) attain the sup of a+ εφ(b) for ε = +1, and (a−, b−) attain the sup for ε = −1.
We will check the conditions of Lemma 0.4 for

y1 = a− − φ(b−), (9)

y2 = a+ + φ(b+), (10)

z1 = max(a− − b−, a+ − b+), (11)

z2 = max(a− + b−, a+ + b+). (12)

(Note that z1 and z2 are lower-bounds on the right-hand-side sup for ε = −1,+1 respectively.)
First we need max(y1, y2) ≤ max(z1, z2). But max(z1, z2) = max(a− + |b−|, a+ + |b+|) ≥ max(a− −

φ(b−), a+ + φ(b+)) = max(y1, y2). Here the inequality follows since φ(b) ≤ |b| since φ is Lipschitz and
φ(0) = 0.

Second we need y1+y2
2 ≤ z1+z2

2 . We have z1 + z2 ≥ max((a− − b−) + (a+ + b+), (a− + b−) + (a+ − b+)) =

a+ + a− + |b+ − b−|, so it suffices to show that a++a−+|b+−b−|
2 ≥ a++a−+φ(b+)−φ(b−)

2 . This exactly reduces to
φ(b+)− φ(b−) ≤ |b+ − b−|, which again follows since φ is Lipschitz. This completes the proof of the lemma.

Now to prove the general proposition we observe that if g(x) is convex in x, so is g(x+ t) for any t. We
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then proceed by iteratively applying Lemma 0.5:

Eε1:n [g(sup
t∈T

n∑
i=1

εiφ(ti))] = Eε1:n−1 [Eεn [g(sup
t∈T

n−1∑
i=1

εiφ(ti)︸ ︷︷ ︸
a

+εn φ(tn)︸ ︷︷ ︸
φ(b)

) | ε1:n−1]] (13)

≤ Eε1:n−1
[Eεn [g(sup

t∈T

n−1∑
i=1

εiφ(ti) + εntn) | ε1:n−1]] (14)

= Eε1:n [[g(sup
t∈T

n−1∑
i=1

εiφ(ti) + εntn)] (15)

... (16)

≤ Eε1:n [g(sup
t∈T

ε1φ(t1) +

n∑
i=2

εiti)] (17)

≤ Eε1:n [g(sup
t∈T

n∑
i=1

εiti)], (18)

which completes the proof.

Let us return now to bounding the truncated moments in Proposition 0.2.

Proof of Proposition 0.2. We start with a symmetrization argument. Let µψ̃ = EX∼p∗ [ψ̃(|〈X − µ, v〉|/σ)],
and note that µψ̃ ≤ µψ ≤ 1. Now, by symmetrization we have

EX1,...,Xn∼p∗

[∣∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

ψ̃

(
|〈Xi − µ, v〉|

σ

)
− µψ̃

∣∣∣∣k] (19)

≤ EX,X′∼p,ε
[∣∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

εi

(
ψ̃
( |〈Xi − µ, v〉|

σ

)
− ψ̃

( |〈X ′i − µ, v〉|
σ

))∣∣∣∣k] (20)

≤ 2kEX∼p,ε
[∣∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

εiψ̃
( |〈Xi − µ, v〉|

σ

)∣∣∣∣k]. (21)

Here the first inequality adds and subtracts the mean, the second applies symmetrization, while the third
uses the fact that optimizing a single v for both X and X ′ is smaller than optimizing v separately for each
(and that the expectations of the expressions with X and X ′ are equal to each other in that case).

We now apply Ledoux-Talagrand contraction. Invoking Theorem 0.3 with g(x) = |x|k, φ(x) = ψ̃(|x|) and
ti = 〈Xi − µ, v〉|/σ, we obtain

EX∼p,ε
[∣∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

εiψ̃
( |〈Xi − µ, v〉|

σ

)∣∣∣∣k] ≤ (L/σ)kEX∼p,ε
[∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

εi〈Xi − µ, v〉
∣∣∣k] (22)

= (L/σ)kEX∼p,ε
[∥∥∥ 1

n

n∑
i=1

εi(Xi − µ)
∥∥∥k
2

]
. (23)

We are thus finally left to bound EX∼p,ε[‖
∑n
i=1 εi(Xi−µ)‖k]. Here we will use Khintchine’s inequality, which

says that

Ak‖z‖2 ≤ Eε[|
∑
i

εizi|k]1/k ≤ Bk‖z‖2, (24)

where Ak is Θ(1) and Bk is Θ(
√
k) for k ≥ 1. Applying this in our case, we obtain

EX,ε[‖
n∑
i=1

εi(Xi − µ)‖k2 ] ≤ O(1)kEX,ε,ε′ [|
n∑
i=1

εi〈Xi − µ, ε′〉|k]. (25)
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Next apply Rosenthal’s inequality (Eq. ??), which yields that

EX,ε[
n∑
i=1

εi〈Xi − µ, ε′〉|k | ε′] ≤ O(k)k
n∑
i=1

EX,ε[|〈Xi − µ, ε′〉|k | ε′] +O(
√
k)k(

n∑
i=1

E[〈Xi − µ, ε′〉|2])k/2 (26)

≤ O(k)k · nσk‖ε′‖k2 +O(
√
kn)kσk‖ε′‖k2 (27)

= O(σk
√
d)kn+O(σ

√
kd)knk/2, (28)

where the last step uses that ‖ε′‖2 =
√
d and the second-to-last step uses the bounded moments of X. As

long as n� kk/(k−2) the latter term dominates and hence plugging back into we conclude that

EX,ε[‖
n∑
i=1

εi(Xi − µ)‖k2 ]1/k = O(σ
√
kdn). (29)

Thus bounds the symmetrized truncated moments in (22-23) by O(L
√
kd/n)k, and plugging back into (21)

completes the proof.

Application: isotropic Gaussians. Next take Ggauss to be the family of isotropic Gaussians N (µ, I). We
saw earlier that the modulus m(Ggauss, ε) was O(ε) for the mean estimation loss L(p, θ) = ‖θ − µ(p)‖2. Thus
projecting onto Ggauss yields error O(ε) for mean estimation in the limit of infinite samples, but doesn’t work
for finite samples since the TV distance to Ggauss will always be 1.

Instead we will project onto the set Gcov(σ) = {p | ‖E[(X − µ)(X − µ)>]‖ ≤ σ2}, for σ2 = O(1 + d/n+
log(1/δ)/n). We already saw in Lemma ?? that when p∗ is (sub-)Gaussian the empirical distribution p∗n lies
within this set. But the modulus of Gcov only decays as O(

√
ε), which is worse than the O(ε) dependence

that we had in infinite samples! How can we resolve this issue?
We will let Giso be the family of distributions whose covariance is not only bounded, but close to the

identity, and where moreover this holds for all (1− ε)-subsets:

Giso(σ1, σ2)
def
= {p | ‖Er[X − µ]‖2 ≤ σ1 and ‖Er[(X − µ)(X − µ)> − I‖ ≤ (σ2)2, whenever r ≤ p

1− ε
}. (30)

The following improvement on Lemma ?? implies that p∗n ∈ Giso(σ1, σ2) for σ1 = O(ε
√

log(1/ε)) and

σ2 = O(
√
ε log(1/ε)). [Note: the lemma below is wrong as stated. To be fixed.]

Lemma 0.6. Suppose that X1, . . . , Xn are drawn independently from a sub-Gaussian distribution with
sub-Gaussian parameter σ, mean 0, and identity covariance. Then, with probability 1− δ we have∥∥∥ 1

|S|

n∑
i∈S

XiX
>
i − I

∥∥∥ ≤ O(σ2 ·
(
ε log(1/ε) +

d+ log(1/δ)

n

))
, and (31)

∥∥∥ 1

|S|

n∑
i∈S

Xi

∥∥∥
2
≤ O

(
σ ·
(
ε
√

log(1/ε) +

√
d+ log(1/δ)

n

))
(32)

for all subsets S ⊆ {1, . . . , n} with |S| ≥ (1 − ε)n. In particular, if n � d/(ε2 log(1/ε)) then δ ≤
exp(−cεn log(1/ε)) for some constant c.

We will return to the proof of Lemma 0.6 later. For now, note that this means that p∗n ∈ G′ for
G′ = Giso(O(ε

√
log(1/ε),O(

√
ε log(1/ε))), at least for large enough n. Furthermore, G′ ⊂ M for M =

Gcov(1 +O(ε log(1/ε))).
Now we bound the generalized modulus of continuity:

Lemma 0.7. Suppose that p ∈ Giso(σ1, σ2) and q ∈ Gcov(
√

1 + σ2
2), and furthermore TV(p, q) ≤ ε. Then

‖µ(p)− µ(q)‖2 ≤ O(σ1 + σ2
√
ε+ ε).
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Proof. Take the midpoint distribution r = min(p,q)
1−ε , and write q = (1− ε)r+ εq′. We will bound ‖µ(r)−µ(q)‖2

(note that ‖µ(r)− µ(p)‖2 is already bounded since p ∈ Giso). We have that

Covq[X] = (1− ε)Er[(X − µq)(X − µq)>] + εEq′ [(X − µq)(X − µq)>] (33)

= (1− ε)(Covr[X] + (µq − µr)(µq − µr)>) + εEq′ [(X − µq)(X − µ)q)>] (34)

� (1− ε)(Covr[X] + (µq − µr)(µq − µr)>) + ε(µq − µq′)(µq − µq′)>. (35)

A computation yields µq − µq′ = (1−ε)2
ε (µq − µr). Plugging this into (35) and simplifying, we obtain that

Covq[X] � (1− ε)(Covr[X] + (1/ε)(µq − µr)(µq − µr)>). (36)

Now since Covr[X] � (1− σ2
2)I, we have ‖Covq[X]‖ ≥ (1− ε)(1− σ2

2) + (1/ε)‖µq − µr‖22. But by assumption
‖Covq[X]‖ ≤ 1+σ2

2 . Combining these yields that ‖µr−µq‖22 ≤ ε(2σ2
2+ε+εσ2

2), and so ‖µr−µq‖2 ≤ O(ε+σ2
√
ε),

which gives the desired result.

In conclusion, projecting onto Gcov(1 +O(ε log(1/ε))) under TV distance gives a robust mean estimator
for isotropic Gaussians, which achieves error O(ε

√
log(1/ε)). This is slightly worse than the optimal O(ε)

bound but improves over the näıve analysis that only gave O(
√
ε).

Another advantage of projecting onto Gcov is that, as we will see in Section ??, this projection can be
done computationally efficiently.

Proof of Lemma 0.6. TBD
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