[Lectures 6-7]

0.0.1 Expanding the Set

In Section ?? we saw how to resolve the issue with TV projection by relaxing to a weaker distance TV. We will now study an alternate approach, based on expanding the destination set \mathcal{G} to a larger set \mathcal{M} . For this approach we will need to reference the "true empirical distribution" p_n^* . What we mean by this is the following: Whenever $\mathsf{TV}(p^*, \tilde{p}) \leq \epsilon$, we know that p^* and \tilde{p} are identical except for some event E of probability ϵ . Therefore we can sample from \tilde{p} as follows:

- 1. Draw a sample from $X \sim p^*$.
- 2. Check if E holds; if it does, replace X with a sample from the conditional distribution $\tilde{p}_{|E}$.
- 3. Otherwise leave X as-is.

Thus we can interpret a sample from \tilde{p} as having a $1 - \epsilon$ chance of being "from" p^* . More generally, we can construct the empirical distribution \tilde{p}_n by first constructing the empirical distribution p_n^* coming from p^* , then replacing $\mathsf{Binom}(n,\epsilon)$ of the points with samples from $\tilde{p}_{|E}$. Formally, we have created a coupling between the random variables p_n^* and \tilde{p}_n such that $\mathsf{TV}(p_n^*, \tilde{p}_n)$ is distributed as $\frac{1}{n}\mathsf{Binom}(n,\epsilon)$.

Let us return to expanding the set from \mathcal{G} to \mathcal{M} . For this to work, we need three properties to hold:

- \mathcal{M} is large enough: $\min_{q \in \mathcal{M}} \mathsf{TV}(q, p_n^*)$ is small with high probability.
- The empirical loss $L(p_n^*, \theta)$ is a good approximation to the population loss $L(p^*, \theta)$.
- The modulus is still bounded: $\min_{p,q \in \mathcal{M}: \mathsf{TV}(p,q) \leq 2\epsilon} L(p, \theta^*(q))$ is small.

In fact, it suffices for \mathcal{M} to satisfy a weaker property; we only need the "generalized modulus" to be small relative to some $\mathcal{G}' \subset \mathcal{M}$:

Proposition 0.1. For a set $\mathcal{G}' \subset \mathcal{M}$, define the generalized modulus of continuity as

$$\mathfrak{m}(\mathcal{G}', \mathcal{M}, 2\epsilon) \stackrel{\text{def}}{=} \min_{p \in \mathcal{G}', q \in \mathcal{M}: \mathsf{TV}(p,q) \le 2\epsilon} L(p, \theta^*(q)).$$
(1)

Assume that the true empirical distribution p_n^* lies in \mathcal{G}' with probability $1 - \delta$. Then the minimum distance functional projecting under TV onto \mathcal{M} has empirical error $L(p_n^*, \hat{\theta})$ at most $\mathfrak{m}(\mathcal{G}', \mathcal{M}, 2\epsilon')$ with probability at least $1 - \delta - \mathbb{P}[\mathsf{Binom}(\epsilon, n) \geq \epsilon' n]$.

Proof. Let $\epsilon' = \mathsf{TV}(p_n^*, \tilde{p}_n)$, which is $\mathsf{Binom}(\epsilon, n)$ -distributed. If p_n^* lies in \mathcal{G}' , then since $\mathcal{G}' \subset \mathcal{M}$ we know that \tilde{p}_n has distance at most ϵ' from \mathcal{M} , and so the projected distribution q satisfies $\mathsf{TV}(q, \tilde{p}_n) \leq \epsilon'$ and hence $\mathsf{TV}(q, p_n^*) \leq 2\epsilon'$. It follows from the definition that $L(p_n^*, \hat{\theta}) = L(p_n^*, \theta^*(q)) \leq \mathfrak{m}(\mathcal{G}', \mathcal{M}, 2\epsilon')$.

A useful bound on the binomial tail is that $\mathbb{P}[\mathsf{Binom}(\epsilon, n) \ge 2\epsilon n] \le \exp(-\epsilon n/3)$. In particular the empirical error is at most $\mathfrak{m}(\mathcal{G}', \mathcal{M}, 4\epsilon)$ with probability at least $1 - \delta - \exp(-\epsilon n/3)$.

Application: bounded kth moments. First suppose that the distribution p^* has bounded kth moments, i.e. $\mathcal{G}_{\mathsf{mom},k}(\sigma) = \{p \mid \|p\|_{\psi} \leq \sigma\}$, where $\psi(x) = x^k$. When k > 2, the empirical distribution p_n^* will not have bound kth moments until $n \geq \Omega(d^{k/2})$. This is because if we take a single sample $x_1 \sim p$ and let v be a unit vector in the direction of $x_1 - \mu$, then $\mathbb{E}_{x \sim p_n^*}[\langle x - \mu, v \rangle^k] \geq \frac{1}{n} \|x_1 - \mu\|_2^k \gtrsim d^{k/2}/n$, since the norm of $\|x_1 - \mu\|_2$ is typically \sqrt{d} .

Consequently, it is necessary to expand the set and we will choose $\mathcal{G}' = \mathcal{M} = \mathcal{G}_{\mathsf{TV}}(\rho, \epsilon)$ for $\rho = \mathcal{O}(\sigma \epsilon^{1-1/k})$ to be the set of resilience distributions with appropriate parameters ρ and ϵ . We already know that the modulus of \mathcal{M} is bounded by $\mathcal{O}(\sigma \epsilon^{1-1/k})$, so the hard part is showing that the empirical distribution p_n^* lies in \mathcal{M} with high probability.

As noted above, we cannot hope to prove that p_n^* has bounded moments except when $n = \Omega(d^{k/2})$, which is too large. We will instead show that certain *truncated* moments of p_n^* are bounded as soon as $n = \Omega(d)$, and that these truncated moments suffice to show resilience. Specifically, if $\psi(x) = x^k$ is the Orlicz function for the kth moments, we will define the truncated function

$$\tilde{\psi}(x) = \begin{cases} x^k & : x \le x_0 \\ k x_0^{k-1} (x - x_0) + x_0^k & : x > x_0 \end{cases}$$
(2)

In other words, $\tilde{\psi}$ is equal to ψ for $x \leq x_0$, and is the best linear lower bound to ψ for $x > x_0$. Note that $\tilde{\psi}$ is *L*-Lipschitz for $L = kx_0^{k-1}$. We will eventually take $x_0 = (k^{k-1}\epsilon)^{-1/k}$ and hence $L = (1/\epsilon)^{(k-1)/k}$. Using a symmetrization argument, we will bound the truncated $\sup_{\|v\|_2 \leq 1} \mathbb{E}_{p_n^*}[\tilde{\psi}(|\langle x - \mu, v \rangle|/\sigma)].$

Proposition 0.2. Let $X_1, \ldots, X_n \sim p^*$, where $p^* \in \mathcal{G}_{\mathsf{mom},k}(\sigma)$. Then,

$$\mathbb{E}_{X_1,\dots,X_n \sim p^*} \left[\left| \sup_{\|v\|_2 \le 1} \frac{1}{n} \sum_{i=1}^n \tilde{\psi}\left(\frac{|\langle X_i - \mu, v \rangle|}{\sigma} \right) - U(v) \right|^k \right] \le O\left(2L\sqrt{\frac{dk}{n}}\right)^k,\tag{3}$$

where $L = kx_0^{k-1}$ and U(v) is a function satisfying $U(v) \leq 1$ for all v.

Before proving Proposition 0.2, let us interpret its significance. Take $x_0 = (k^{k-1}\epsilon)^{-1/k}$ and hence $L = \epsilon^{1-1/k}$. Take *n* large enough so that the right-hand-side of (3) is at most 1, which requires $n \ge \Omega(kd/\epsilon^{2-2/k})$. We then obtain a high-probability bound on the $\tilde{\psi}$ -norm of p_n^* , i.e. the $\tilde{\psi}$ -norm is at most $\mathcal{O}(\delta^{-1/k})$ with probability $1 - \delta$. This implies that p_n^* is resilient with parameter $\rho = \sigma \epsilon \tilde{\psi}^{-1}(\mathcal{O}(\delta^{-1/k})/\epsilon) = 2\sigma \epsilon^{1-1/k}$. A useful bound on $\tilde{\psi}^{-1}$ is $\tilde{\psi}(-1)(z) \le x_0 + z/L$, and since $x_0 \le (1/\epsilon)^{-1/k}$ and $L = (1/\epsilon)^{(k-1)/k}$ in our case, we have

$$\rho \leq \mathcal{O}(\sigma \epsilon^{1-1/k} \delta^{-1/k})$$
 with probability $1 - \delta$.

This matches the population-bound of $\mathcal{O}(\sigma \epsilon^{1-1/k})$, and only requires $kd/\epsilon^{2-2/k}$ samples, in contrast to the d/ϵ^2 samples required before. Indeed, this sample complexity dependence is optimal (other than the factor of k); the only drawback is that we do not get exponential tails (we instead obtain tails of $\delta^{-1/k}$, which is worse than the $\sqrt{\log(1/\delta)}$ from before).

Now we discuss some ideas that are needed in the proof. We would like to somehow exploit the fact that $\tilde{\psi}$ is *L*-Lipschitz to prove concentration. We can do so with the following keystone result in probability theory:

Theorem 0.3 (Ledoux-Talagrand Contraction). Let $\phi : \mathbb{R} \to \mathbb{R}$ be an L-Lipschitz function such that $\phi(0) = 0$. Then for any convex, increasing function g and Rademacher variables $\epsilon_{1:n} \sim \{\pm 1\}$, we have

$$\mathbb{E}_{\epsilon_{1:n}}[g(\sup_{t\in T}\sum_{i=1}^{n}\epsilon_{i}\phi(t_{i}))] \leq \mathbb{E}_{\epsilon_{1:n}}[g(L\sup_{t\in T}\sum_{i=1}^{n}\epsilon_{i}t_{i})].$$
(4)

Let us interpret this result. We should think of the t_i as a quantity such as $\langle x_i - \mu, v \rangle$, where abstracting to t_i yields generality and notational simplicity. Theorem 0.3 says that if we let $Y = \sup_{t \in T} \sum_i \epsilon_i \phi(t_i)$ and $Z = L \sup_{t \in T} \sum_i \epsilon_i t_i$, then $\mathbb{E}[g(Y)] \leq \mathbb{E}[g(Z)]$ for all convex increasing functions g. When this holds we say that Y stochastically dominates Z in second order; intuitively, it is equivalent to saying that Z has larger mean than Y and greater variation around its mean. For distributions supported on just two points, we can formalize this as follows:

Lemma 0.4 (Two-point stochastic dominance). Let Y take values y_1 and y_2 with probability $\frac{1}{2}$, and Z take values z_1 and z_2 with probability $\frac{1}{2}$. Then Z stochastically dominates Y (in second order) if and only if

$$\frac{z_1 + z_2}{2} \ge \frac{y_1 + y_2}{2} \text{ and } \max(z_1, z_2) \ge \max(y_1, y_2).$$
(5)

Proof. Without loss of generality assume $z_2 \ge z_1$ and $y_2 \ge y_1$. We want to show that $\mathbb{E}[g(Y)] \le \mathbb{E}[g(Z)]$ for all convex increasing g if and only if (5) holds. We first establish necessity of (5). Take g(x) = x, then we require $\mathbb{E}[Y] \le \mathbb{E}[Z]$, which is the first condition in (5). Taking $g(x) = \max(x - z_2, 0)$ yields $\mathbb{E}[g(Z)] = 0$ and $\mathbb{E}[g(Y)] \ge \frac{1}{2} \max(y_2 - z_2, 0)$, so $\mathbb{E}[g(Y)] \le \mathbb{E}[g(Z)]$ implies that $y_2 \le z_2$, which is the second condition in (5).

We next establish sufficiency, by conjuring up appropriate weights for Jensen's inequality. We have

$$\frac{y_2 - z_1}{z_2 - z_1}g(z_2) + \frac{z_2 - y_2}{z_2 - z_1}g(z_1) \ge g\left(\frac{z_2(y_2 - z_1) + z_1(z_2 - y_2)}{z_2 - z_1}\right) = g(y_2),\tag{6}$$

$$\frac{z_2 - y_2}{z_2 - z_1}g(z_2) + \frac{y_2 - z_1}{z_2 - z_1}g(z_1) \ge g\left(\frac{z_2(z_2 - y_2) + z_1(y_2 - z_1)}{z_2 - z_1}\right) = g(z_1 + z_2 - y_2) \ge g(y_1).$$
(7)

Here the first two inequalities are Jensen while the last is by the first condition in (5) together with the monotonicity of g. Adding these together yields $g(z_2) + g(z_1) \ge g(y_2) + g(y_1)$, or $\mathbb{E}[g(Z)] \ge \mathbb{E}[g(Y)]$, as desired. We need only check that the weights $\frac{y_2-z_1}{z_2-z_1}$ and $\frac{z_2-y_2}{z_2-z_1}$ are positive. The second weight is positive by the assumption $z_2 \ge y_2$. The first weight could be negative if $y_2 < z_1$, meaning that both y_1 and y_2 are smaller than both z_1 and z_2 . But in this case, the inequality $\mathbb{E}[g(Y)] \le \mathbb{E}[g(Z)]$ trivially holds by monotonicity of g. This completes the proof.

We are now ready to prove Theorem 0.3.

Proof of Theorem 0.3. Without loss of generality we may take L = 1. Our strategy will be to iteratively apply an inequality for a single ϵ_i to replace all the $\phi(t_i)$ with t_i one-by-one. The inequality for a single ϵ_i is the following:

Lemma 0.5. For any 1-Lipschitz function ϕ with $\phi(0) = 0$, any collection T of ordered pairs (a, b), and any convex increasing function g, we have

$$\mathbb{E}_{\epsilon \sim \{-1,+1\}} [g(\sup_{(a,b)\in T} a + \epsilon \phi(b))] \le \mathbb{E}_{\epsilon \sim \{-1,+1\}} [g(\sup_{(a,b)\in T} a + \epsilon b)].$$
(8)

To prove this, let (a_+, b_+) attain the sup of $a + \epsilon \phi(b)$ for $\epsilon = +1$, and (a_-, b_-) attain the sup for $\epsilon = -1$. We will check the conditions of Lemma 0.4 for

$$y_1 = a_- - \phi(b_-), \tag{9}$$

$$y_{2} = a_{+} + \phi(b_{+}),$$
(10)
$$y_{1} = \max(a_{-} - b_{-} - a_{+} - b_{+})$$
(11)

$$z_1 = \max(a_- - b_-, a_+ - b_+), \tag{11}$$

$$z_2 = \max(a_- + b_-, a_+ + b_+). \tag{12}$$

(Note that z_1 and z_2 are lower-bounds on the right-hand-side sup for $\epsilon = -1, +1$ respectively.)

First we need $\max(y_1, y_2) \leq \max(z_1, z_2)$. But $\max(z_1, z_2) = \max(a_- + |b_-|, a_+ + |b_+|) \geq \max(a_- - \phi(b_-), a_+ + \phi(b_+)) = \max(y_1, y_2)$. Here the inequality follows since $\phi(b) \leq |b|$ since ϕ is Lipschitz and $\phi(0) = 0$.

Second we need $\frac{y_1+y_2}{2} \leq \frac{z_1+z_2}{2}$. We have $z_1+z_2 \geq \max((a_--b_-)+(a_++b_+), (a_-+b_-)+(a_+-b_+)) = a_++a_-+|b_+-b_-|$, so it suffices to show that $\frac{a_++a_-+|b_+-b_-|}{2} \geq \frac{a_++a_-+\phi(b_+)-\phi(b_-)}{2}$. This exactly reduces to $\phi(b_+)-\phi(b_-) \leq |b_+-b_-|$, which again follows since ϕ is Lipschitz. This completes the proof of the lemma.

Now to prove the general proposition we observe that if g(x) is convex in x, so is g(x + t) for any t. We

then proceed by iteratively applying Lemma 0.5:

$$\mathbb{E}_{\epsilon_{1:n}}[g(\sup_{t\in T}\sum_{i=1}^{n}\epsilon_{i}\phi(t_{i}))] = \mathbb{E}_{\epsilon_{1:n-1}}[\mathbb{E}_{\epsilon_{n}}[g(\sup_{t\in T}\sum_{i=1}^{n-1}\epsilon_{i}\phi(t_{i}) + \epsilon_{n}\underbrace{\phi(t_{n})}_{\phi(b)}) \mid \epsilon_{1:n-1}]]$$
(13)

$$\leq \mathbb{E}_{\epsilon_{1:n-1}}\left[\mathbb{E}_{\epsilon_n}\left[g(\sup_{t\in T}\sum_{i=1}^{n-1}\epsilon_i\phi(t_i)+\epsilon_nt_n)\mid \epsilon_{1:n-1}\right]\right]$$
(14)

$$= \mathbb{E}_{\epsilon_{1:n}} \left[\left[g(\sup_{t \in T} \sum_{i=1}^{n-1} \epsilon_i \phi(t_i) + \epsilon_n t_n) \right]$$
(15)

$$\leq \mathbb{E}_{\epsilon_{1:n}}[g(\sup_{t\in T}\epsilon_1\phi(t_1) + \sum_{i=2}^n \epsilon_i t_i)]$$
(17)

$$\leq \mathbb{E}_{\epsilon_{1:n}}[g(\sup_{t\in T}\sum_{i=1}^{n}\epsilon_{i}t_{i})],\tag{18}$$

which completes the proof.

Let us return now to bounding the truncated moments in Proposition 0.2.

÷

Proof of Proposition 0.2. We start with a symmetrization argument. Let $\mu_{\tilde{\psi}} = \mathbb{E}_{X \sim p^*}[\tilde{\psi}(|\langle X - \mu, v \rangle|/\sigma)]$, and note that $\mu_{\tilde{\psi}} \leq \mu_{\psi} \leq 1$. Now, by symmetrization we have

$$\mathbb{E}_{X_1,\dots,X_n \sim p^*} \left[\left| \sup_{\|v\|_2 \le 1} \frac{1}{n} \sum_{i=1}^n \tilde{\psi} \left(\frac{|\langle X_i - \mu, v \rangle|}{\sigma} \right) - \mu_{\tilde{\psi}} \right|^k \right]$$
(19)

$$\leq \mathbb{E}_{X,X'\sim p,\epsilon} \left[\left| \sup_{\|v\|_{2} \leq 1} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \left(\tilde{\psi} \left(\frac{|\langle X_{i} - \mu, v \rangle|}{\sigma} \right) - \tilde{\psi} \left(\frac{|\langle X_{i}' - \mu, v \rangle|}{\sigma} \right) \right) \right|^{k} \right]$$
(20)

$$\leq 2^{k} \mathbb{E}_{X \sim p, \epsilon} \left[\left| \sup_{\|v\|_{2} \leq 1} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \tilde{\psi} \left(\frac{|\langle X_{i} - \mu, v \rangle|}{\sigma} \right) \right|^{k} \right].$$

$$\tag{21}$$

Here the first inequality adds and subtracts the mean, the second applies symmetrization, while the third uses the fact that optimizing a single v for both X and X' is smaller than optimizing v separately for each (and that the expectations of the expressions with X and X' are equal to each other in that case).

We now apply Ledoux-Talagrand contraction. Invoking Theorem 0.3 with $g(x) = |x|^k$, $\phi(x) = \psi(|x|)$ and $t_i = \langle X_i - \mu, v \rangle | / \sigma$, we obtain

$$\mathbb{E}_{X \sim p,\epsilon} \left[\left| \sup_{\|v\|_{2} \leq 1} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \tilde{\psi} \left(\frac{|\langle X_{i} - \mu, v \rangle|}{\sigma} \right) \right|^{k} \right] \leq (L/\sigma)^{k} \mathbb{E}_{X \sim p,\epsilon} \left[\left| \sup_{\|v\|_{2} \leq 1} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \langle X_{i} - \mu, v \rangle \right|^{k} \right]$$
(22)

$$= (L/\sigma)^{k} \mathbb{E}_{X \sim p,\epsilon} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} (X_{i} - \mu) \right\|_{2}^{k} \right].$$
(23)

We are thus finally left to bound $\mathbb{E}_{X \sim p, \epsilon} [\|\sum_{i=1}^{n} \epsilon_i (X_i - \mu)\|^k]$. Here we will use *Khintchine's inequality*, which says that

$$A_{k} \|z\|_{2} \leq \mathbb{E}_{\epsilon} [|\sum_{i} \epsilon_{i} z_{i}|^{k}]^{1/k} \leq B_{k} \|z\|_{2},$$
(24)

where A_k is $\Theta(1)$ and B_k is $\Theta(\sqrt{k})$ for $k \ge 1$. Applying this in our case, we obtain

$$\mathbb{E}_{X,\epsilon}\left[\|\sum_{i=1}^{n}\epsilon_{i}(X_{i}-\mu)\|_{2}^{k}\right] \leq O(1)^{k}\mathbb{E}_{X,\epsilon,\epsilon'}\left[|\sum_{i=1}^{n}\epsilon_{i}\langle X_{i}-\mu,\epsilon'\rangle|^{k}\right].$$
(25)

Next apply Rosenthal's inequality (Eq. ??), which yields that

$$\mathbb{E}_{X,\epsilon}\left[\sum_{i=1}^{n} \epsilon_i \langle X_i - \mu, \epsilon' \rangle |^k \mid \epsilon'\right] \le \mathcal{O}(k)^k \sum_{i=1}^{n} \mathbb{E}_{X,\epsilon}\left[|\langle X_i - \mu, \epsilon' \rangle|^k \mid \epsilon'\right] + \mathcal{O}(\sqrt{k})^k \left(\sum_{i=1}^{n} \mathbb{E}[\langle X_i - \mu, \epsilon' \rangle|^2]\right)^{k/2}$$
(26)

$$\leq \mathcal{O}(k)^k \cdot n\sigma^k \|\epsilon'\|_2^k + \mathcal{O}(\sqrt{kn})^k \sigma^k \|\epsilon'\|_2^k \tag{27}$$

$$= \mathcal{O}(\sigma k \sqrt{d})^k n + \mathcal{O}(\sigma \sqrt{kd})^k n^{k/2}, \tag{28}$$

where the last step uses that $\|\epsilon'\|_2 = \sqrt{d}$ and the second-to-last step uses the bounded moments of X. As long as $n \gg k^{k/(k-2)}$ the latter term dominates and hence plugging back into we conclude that

$$\mathbb{E}_{X,\epsilon}\left[\|\sum_{i=1}^{n}\epsilon_{i}(X_{i}-\mu)\|_{2}^{k}\right]^{1/k} = \mathcal{O}(\sigma\sqrt{kdn}).$$

$$(29)$$

Thus bounds the symmetrized truncated moments in (22-23) by $O(L\sqrt{kd/n})^k$, and plugging back into (21) completes the proof.

Application: isotropic Gaussians. Next take \mathcal{G}_{gauss} to be the family of isotropic Gaussians $\mathcal{N}(\mu, I)$. We saw earlier that the modulus $\mathfrak{m}(\mathcal{G}_{gauss}, \epsilon)$ was $\mathcal{O}(\epsilon)$ for the mean estimation loss $L(p, \theta) = ||\theta - \mu(p)||_2$. Thus projecting onto \mathcal{G}_{gauss} yields error $\mathcal{O}(\epsilon)$ for mean estimation in the limit of infinite samples, but doesn't work for finite samples since the TV distance to \mathcal{G}_{gauss} will always be 1.

Instead we will project onto the set $\mathcal{G}_{cov}(\sigma) = \{p \mid ||\mathbb{E}[(X - \mu)(X - \mu)^{\top}]|| \leq \sigma^2\}$, for $\sigma^2 = \mathcal{O}(1 + d/n + \log(1/\delta)/n)$. We already saw in Lemma ?? that when p^* is (sub-)Gaussian the empirical distribution p_n^* lies within this set. But the modulus of \mathcal{G}_{cov} only decays as $\mathcal{O}(\sqrt{\epsilon})$, which is worse than the $\mathcal{O}(\epsilon)$ dependence that we had in infinite samples! How can we resolve this issue?

We will let \mathcal{G}_{iso} be the family of distributions whose covariance is not only bounded, but close to the identity, and where moreover this holds for all $(1 - \epsilon)$ -subsets:

$$\mathcal{G}_{\mathsf{iso}}(\sigma_1, \sigma_2) \stackrel{\text{def}}{=} \{ p \mid \|\mathbb{E}_r[X - \mu]\|_2 \le \sigma_1 \text{ and } \|\mathbb{E}_r[(X - \mu)(X - \mu)^\top - I\| \le (\sigma_2)^2, \text{ whenever } r \le \frac{p}{1 - \epsilon} \}.$$
(30)

The following improvement on Lemma ?? implies that $p_n^* \in \mathcal{G}_{iso}(\sigma_1, \sigma_2)$ for $\sigma_1 = \mathcal{O}(\epsilon \sqrt{\log(1/\epsilon)})$ and $\sigma_2 = \mathcal{O}(\sqrt{\epsilon \log(1/\epsilon)})$. [Note: the lemma below is wrong as stated. To be fixed.]

Lemma 0.6. Suppose that X_1, \ldots, X_n are drawn independently from a sub-Gaussian distribution with sub-Gaussian parameter σ , mean 0, and identity covariance. Then, with probability $1 - \delta$ we have

$$\left\|\frac{1}{|S|}\sum_{i\in S}^{n} X_{i}X_{i}^{\top} - I\right\| \leq \mathcal{O}\left(\sigma^{2} \cdot \left(\epsilon \log(1/\epsilon) + \frac{d + \log(1/\delta)}{n}\right)\right), \text{ and}$$
(31)

$$\left\|\frac{1}{|S|}\sum_{i\in S}^{n} X_{i}\right\|_{2} \le \mathcal{O}\left(\sigma \cdot \left(\epsilon\sqrt{\log(1/\epsilon)} + \sqrt{\frac{d+\log(1/\delta)}{n}}\right)\right)$$
(32)

for all subsets $S \subseteq \{1, \ldots, n\}$ with $|S| \ge (1 - \epsilon)n$. In particular, if $n \gg d/(\epsilon^2 \log(1/\epsilon))$ then $\delta \le \exp(-\epsilon \epsilon n \log(1/\epsilon))$ for some constant c.

We will return to the proof of Lemma 0.6 later. For now, note that this means that $p_n^* \in \mathcal{G}'$ for $\mathcal{G}' = \mathcal{G}_{iso}(\mathcal{O}(\epsilon \sqrt{\log(1/\epsilon)}, \mathcal{O}(\sqrt{\epsilon \log(1/\epsilon)})))$, at least for large enough *n*. Furthermore, $\mathcal{G}' \subset \mathcal{M}$ for $\mathcal{M} = \mathcal{G}_{cov}(1 + \mathcal{O}(\epsilon \log(1/\epsilon)))$.

Now we bound the generalized modulus of continuity:

Lemma 0.7. Suppose that $p \in \mathcal{G}_{iso}(\sigma_1, \sigma_2)$ and $q \in \mathcal{G}_{cov}(\sqrt{1 + \sigma_2^2})$, and furthermore $\mathsf{TV}(p, q) \leq \epsilon$. Then $\|\mu(p) - \mu(q)\|_2 \leq \mathcal{O}(\sigma_1 + \sigma_2\sqrt{\epsilon} + \epsilon)$.

Proof. Take the midpoint distribution $r = \frac{\min(p,q)}{1-\epsilon}$, and write $q = (1-\epsilon)r + \epsilon q'$. We will bound $\|\mu(r) - \mu(q)\|_2$ (note that $\|\mu(r) - \mu(p)\|_2$ is already bounded since $p \in \mathcal{G}_{iso}$). We have that

$$\operatorname{Cov}_{q}[X] = (1 - \epsilon) \mathbb{E}_{r}[(X - \mu_{q})(X - \mu_{q})^{\top}] + \epsilon \mathbb{E}_{q'}[(X - \mu_{q})(X - \mu_{q})^{\top}]$$
(33)

$$= (1 - \epsilon)(\mathsf{Cov}_r[X] + (\mu_q - \mu_r)(\mu_q - \mu_r)^{\top}) + \epsilon \mathbb{E}_{q'}[(X - \mu_q)(X - \mu)q)^{\top}]$$
(34)

$$\succeq (1 - \epsilon) (\mathsf{Cov}_r[X] + (\mu_q - \mu_r)(\mu_q - \mu_r)^{\top}) + \epsilon (\mu_q - \mu_{q'})(\mu_q - \mu_{q'})^{\top}.$$
(35)

A computation yields $\mu_q - \mu_{q'} = \frac{(1-\epsilon)^2}{\epsilon} (\mu_q - \mu_r)$. Plugging this into (35) and simplifying, we obtain that

$$\operatorname{Cov}_{q}[X] \succeq (1-\epsilon)(\operatorname{Cov}_{r}[X] + (1/\epsilon)(\mu_{q} - \mu_{r})(\mu_{q} - \mu_{r})^{\top}).$$
(36)

Now since $\operatorname{Cov}_r[X] \succeq (1 - \sigma_2^2)I$, we have $\|\operatorname{Cov}_q[X]\| \ge (1 - \epsilon)(1 - \sigma_2^2) + (1/\epsilon)\|\mu_q - \mu_r\|_2^2$. But by assumption $\|\operatorname{Cov}_q[X]\| \le 1 + \sigma_2^2$. Combining these yields that $\|\mu_r - \mu_q\|_2^2 \le \epsilon(2\sigma_2^2 + \epsilon + \epsilon\sigma_2^2)$, and so $\|\mu_r - \mu_q\|_2 \le \mathcal{O}(\epsilon + \sigma_2\sqrt{\epsilon})$, which gives the desired result. \Box

In conclusion, projecting onto $\mathcal{G}_{cov}(1 + \mathcal{O}(\epsilon \log(1/\epsilon)))$ under TV distance gives a robust mean estimator for isotropic Gaussians, which achieves error $\mathcal{O}(\epsilon \sqrt{\log(1/\epsilon)})$. This is slightly worse than the optimal $\mathcal{O}(\epsilon)$ bound but improves over the naïve analysis that only gave $\mathcal{O}(\sqrt{\epsilon})$.

Another advantage of projecting onto \mathcal{G}_{cov} is that, as we will see in Section ??, this projection can be done computationally efficiently.

Proof of Lemma 0.6. TBD