
[Lecture 5]

0.1 Finite-Sample Analysis

Now that we have developed tools for analyzing statistical concentration, we will use these to analyze
the finite-sample behavior of robust estimators. Recall that we previously studied the minimum distance
functional defined as

θ̂(p̃) = θ∗(q), where q = arg min
q∈G

TV(q, p̃). (1)

This projects onto the set G under TV distance and outputs the optimal parameters for the projected
distribution.

The problem with the minimum distance functional defined above is that projection under TV usually
doesn’t make sense for finite samples! For instance, suppose that p is a Gaussian distribution and let pn and
p′n be the empirical distributions of two different sets of n samples. Then TV(pn, p) = TV(pn, p

′
n) = 1 almost

surely. This is because samples from a continuous probability distribution will almost surely be distinct,
and TV distance doesn’t give credit for being “close”—the TV distance between two point masses at 1 and
1.000001 is still 1.1

To address this issue, we will consider two solutions. The first solution is to relax the distance. Intuitively,
the issue is that the TV distance is too strong—it reports a large distance even between a population
distribution p and the finite-sample distribution pn. We will replace the distance TV with a more forgiving

distance T̃V and use the minimum distance functional corresponding to this relaxed distance. To show

that projection under T̃V still works, we will need to check that the modulus m(G, ε) is still small after we

replace TV with T̃V, and we will also need to check that the distance T̃V(p, pn) between p and its empirical
distribution is small with high probability. We do this below in Section 0.1.1.

An alternative to relaxing the distance from TV to T̃V is to expand the destination set from G to some
M⊃ G, such that even though p is not close to the empirical distribution pn, some element of M is close to
pn. Another advantage to expanding the destination set is that projecting onto G may not be computationally
tractable, while projecting onto some larger set M can sometimes be done efficiently. We will see how to
statistically analyze this modified projection algorithm in Section ??, and study the computational feasibility
of projecting onto a set M starting in Section ??.

0.1.1 Relaxing the Distance

Here we instantiate the first solution of replacing TV with some T̃V for the projection algorithm. The

following lemma shows that properties we need T̃V to satisfy:

Lemma 0.1. Suppose that T̃V is a (pseudo-)metric such that T̃V(p, q) ≤ TV(p, q) for all p, q. If we assume

that p∗ ∈ G and TV(p∗, p̃) ≤ ε, then the error of the minimum distance functional (??) with D = T̃V is at

most m(G, 2ε′, T̃V, L), where ε′ = ε+ T̃V(p̃, p̃n).

Proof. By Proposition ?? we already know that the error is bounded by m(G, 2T̃V(p∗, p̃n), T̃V, L). Since

T̃V is a pseudometric, by the triangle inequality we have T̃V(p∗, p̃n) ≤ T̃V(p∗, p̃) + T̃V(p̃, p̃n). Finally,

T̃V(p∗, p̃) ≤ TV(p∗, p̃) by assumption.

Lemma 0.1 shows that we need T̃V to satisfy two properties: T̃V(p̃, p̃n) should be small, and the modulus

m(G, ε, T̃V) should not be too much larger than m(G, ε,TV).

For mean estimation (where recall L(p, θ) = ‖θ − µ(p)‖2), we will use the following T̃V:

T̃VH(p, q)
def
= sup

f∈H,τ∈R
|PX∼p[f(X) ≥ τ ]− PX∼q[f(X) ≥ τ ]|. (2)

(Note the similarity to the distance in Proposition ??; we will make use of this later.) We will make the

particular choice H = Hlin, where Hlin
def
= {x 7→ 〈v, x〉 | v ∈ Rd}.

1We will later study the W1 distance, which does give credit for being close.
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First note that T̃VH is indeed upper-bounded by TV, since TV(p, q) = supE |p(E)−q(E)| is the supremum
over all events E, and (2) takes a supremum over a subset of events. The intuition for taking the particular
family H is that linear projections of our data contain all information needed to recover the mean, so perhaps
it is enough for distributions to be close only under these projections.

Bounding the modulus. To formalize this intuition, we prove the following mean crossing lemma:

µp1 µrp1µrp2 µp2

Figure 1: Illustration of mean cross lemma. For any distributions p1, p2 that are close under T̃V, we can
truncate the ε-tails of each distribution to make their means cross.

Lemma 0.2. Suppose that p and q are two distributions such that T̃VH(p, q) ≤ ε. Then for any f ∈ H, there
are distributions rp ≤ p

1−ε and rq ≤ q
1−ε such that EX∼rp [f(X)] ≥ EY∼rq [f(Y )].

Proof. We will prove the stronger statement that f(X) under rp stochastically dominates f(Y ) under rq.
Starting from p, q, we delete ε probability mass corresponding to the smallest points of f(X) in p to get rp,

and delete ε probability mass corresponding to the largest points f(Y ) in q to get rq. Since T̃VH(p, q) ≤ ε we
have

sup
τ∈R
|PX∼p(f(X) ≥ τ)− PY∼q(f(Y ) ≥ τ)| ≤ ε, (3)

which implies that Prp(f(X) ≥ τ) ≥ Prq (f(Y ) ≥ τ) for all t ∈ R. Hence, rp stochastically dominates rq and
Erp [f(X)] ≥ Erq [(Y )].

Mean crossing lemmas such as Lemma 0.2 help us bound the modulus of relaxed distances for the family
of resilient distributions. In this case we have the following corollary:

Corollary 0.3. For the family GTV(ρ, ε) of (ρ, ε)-resilient distributions and L(p, θ) = ‖θ − µ(p)‖2, we have

m(GTV(ρ, ε), ε, T̃VHlin
) ≤ 2ρ. (4)

Compare to Theorem ?? where we showed that m(GTV, ε,TV) ≤ ρ. Thus as long as Theorem ?? is tight,

relaxing from TV to T̃VHlin
doesn’t increase the modulus at all!

Proof of Corollary 0.3. Let p, q ∈ GTV such that T̃V(p, q) ≤ ε. Take v = arg max‖v‖2=1 v
>(Ep[X] − Eq[X]),

hence Ep[v>X]−Eq[v>X] = ‖Ep[X]−Eq[X]‖2. It follows from Lemma 0.2 that there exist rp ≤ p
1−ε , rq ≤

q
1−ε

such that

Erp [v>X] ≤ Erq [v>X]. (5)

Furthermore, from p, q ∈ GTV(ρ, ε), we have

Ep[v>X]− Erp [v>X] ≤ ρ, (6)

Erq [v>X]− Eq[v>X] ≤ ρ. (7)
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Then,

‖Ep[X]− Eq[X]‖2 = Ep[v>X]− Eq[v>X] (8)

= Ep[v>X]− Erp [v>X]︸ ︷︷ ︸
≤ρ

+Erp [v>X]− Erq [v>X]︸ ︷︷ ︸
≤0

+Erq [v>X]− Eq[v>X]︸ ︷︷ ︸
≤ρ

(9)

≤ 2ρ, (10)

which shows the modulus is small as claimed.

Bounding the distance to the empirical distribution. Now that we have bounded the modulus, it

remains to bound the distance T̃V(p̃, p̃n). Note that T̃V(p̃, p̃n) is exactly the quantity bounded in equation

(??) of Proposition ??; we thus have that T̃VH(p̃, p̃n) ≤ O
(√ vc(H)+log(1/δ)

n

)
with probability 1 − δ. Here

vc(H) is the VC dimension of the family of threshold functions {x 7→ I[f(x) ≥ τ ] | f ∈ H, τ ∈ R}. So, for
H = Hlin all we need to do is bound the VC dimension of the family of halfspace functions on Rd.

We claimed earlier that this VC dimension is d+ 1, but we prove it here for completeness. We will show
that no set of points x1, . . . , xd+2 ∈ Rd cannot be shattered into all 2d+2 possible subsets using halfspaces.
For any such points we can find multipliers a1, . . . , ad+2 ∈ R such that

d+2∑
i=1

aixi = 0,

d+2∑
i=1

ai = 0. (11)

Let S+ = {i | ai > 0} and S− = {i | ai < 0}. We will show that the convex hulls of S+ and S− intersect.
Consequently, there is no vector v and threshold τ such that 〈xi, v〉 ≥ τ iff i ∈ S+. (This is because both a
halfspace and its complement are convex, so if we let Hv,τ denote the half-space, it is impossible to have
S+ ⊂ Hv,τ , S− ⊂ Hc

v,τ , and conv(S+) ∩ conv(S−) 6= ∅.)
To prove that the convex hulls intersect, note that we have

1

A

∑
i∈S+

aixi =
1

A

∑
i∈S−

(−ai)xi, (12)

where A =
∑
i∈S+

ai =
∑
i∈S−

(−ai). But the left-hand-side lies in conv(S+) while the right-hand-side lies in

conv(S−), so the convex hulls do indeed intersect.
This shows that x1, . . . , xd+2 cannot be shattered, so vc(Hlin) ≤ d+1. Combining this with Proposition ??,

we obtain:

Proposition 0.4. With probability 1− δ, we have T̃VHlin
(p̃, p̃n) ≤ O

(√d+log(1/δ)
n

)
.

Combining this with Corollary 0.3 and Lemma 0.1, we see that projecting onto GTV(ρ, 2ε′) under T̃VHlin

performs well in finite samples, for ε′ = ε+O(
√
d/n). For instance, if G has bounded covariance we achieve

error O(
√
ε+

√
d/n); if G is sub-Gaussian we achieve error Õ(ε+

√
d/n); and in general if G has bounded

ψ-norm we achieve error O
((
ε+

√
d/n

)
ψ−1

(
1

ε+
√
d/n

))
≤ O((ε+

√
d/n)ψ−1(1/ε)).

This analysis is slightly sub-optimal as the best lower bound we are aware of is Ω(εψ−1(1/ε) +
√
d/n), i.e.

the ψ−1(1/ε) coefficient in the dependence on n shouldn’t be there. However, it is accurate as long as ε is
large compared to

√
d/n.

Connection to Tukey median. A classical robust estimator for the mean is the Tukey median, which
solves the problem

min
µ

max
v∈Rd

|PX∼p̃n [〈X, v〉 ≥ 〈µ, v〉]− 1
2 | (13)

[Note: this definition is slightly wrong as it does not behave gracefully when there is a point mass at µ.]

3



It is instructive to compare this to projection under T̃V, which corresponds to

min
q∈G

max
v∈Rd,τ∈R

|PX∼p̃n [〈X, v〉 ≥ τ ]− PX∼q[〈X, v〉 ≥ τ ]|. (14)

The differences are: (1) the Tukey median only minimizes over the mean rather than the full distribution
q; (2) it only considers the threshold 〈µ, v〉 rather than all thresholds τ ; it assumes that the median of any
one-dimensional projection 〈X, v〉 is equal to its mean (which is why we subtract 1

2 in (13)). Distributions
satisfying this final property are said to be unskewed.

For unskewed distributions with “sufficient probability mass” near the mean, the Tukey median yields a
robust estimator. In fact, it can be robust even if the true distribution has heavy tails (and hence is not
resilient), by virtue of leveraging the unskewed property. We will explore this in an exercise.
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