[Lecture 4]

0.0.1 Applications of concentration inequalities

Having developed the machinery above, we next apply it to a few concrete problems to give a sense of how to use it. A key lemma which we will use repeatedly is the union bound, which states that if E_{1}, \ldots, E_{n} are events with probabilities π_{1}, \ldots, π_{n}, then the probability of $E_{1} \cup \cdots \cup E_{n}$ is at most $\pi_{1}+\cdots+\pi_{n}$. A corollary is that if n events each have probability $\ll 1 / n$, then there is a large probability that none of the events occur.

Maximum of sub-Gaussians. Suppose that X_{1}, \ldots, X_{n} are mean-zero sub-Gaussian with parameter σ, and let $Y=\max _{i=1}^{n} X_{i}$. How large is Y ? We will show the following:
Lemma 0.1. The random variable Y is $\mathcal{O}(\sigma \sqrt{\log (n / \delta)})$ with probability $1-\delta$.
Proof. By the Chernoff bound for sub-Gaussians, we have that $\mathbb{P}\left[X_{i} \geq \sigma \sqrt{6 \log (n / \delta)}\right] \leq \exp (-\log (n / \delta))=$ δ / n. Thus by the union bound, the probability that any of the X_{i} exceed $\sigma \sqrt{6 \log (n / \delta)}$ is at most δ. Thus with probability at least $1-\delta$ we have $Y \leq \sigma \sqrt{6 \log (n / \delta)}$, as claimed.

Lemma 0.1 illustrates a typical proof strategy: We first decompose the event we care about as a union of simpler events, then show that each individual event holds with high probability by exploiting independence. As long as the "failure probability" of a single event is much small than the inverse of the number of events, we obtain a meaningful bound. In fact, this strategy can be employed even for an infinite number of events by discretizing to an " ϵ-net", as we will see below:

Eigenvalue of random matrix. Let X_{1}, \ldots, X_{n} be independent zero-mean sub-Gaussian variables in \mathbb{R}^{d} with parameter σ, and let $M=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top}$. How large is $\|M\|$, the maximum eigenvalue of M ? We will show:
Lemma 0.2. The maximum eigenvalue $\|M\|$ is $\mathcal{O}\left(\sigma^{2} \cdot(1+d / n+\log (1 / \delta) / n)\right)$ with probability $1-\delta$.
Proof. The maximum eigenvalue can be expressed as

$$
\begin{equation*}
\|M\|=\sup _{\|v\|_{2} \leq 1} v^{\top} M v=\sup _{\|v\|_{2} \leq 1} \frac{1}{n} \sum_{i=1}^{n}\left|\left\langle X_{i}, v\right\rangle\right|^{2} . \tag{1}
\end{equation*}
$$

The quantity inside the sup is attractive to analyze because it is an average of independent random variables. Indeed, we have

$$
\begin{align*}
\mathbb{E}\left[\exp \left(\frac{n}{\sigma^{2}} v^{\top} M v\right)\right] & =\mathbb{E}\left[\exp \left(\sum_{i=1}^{n}\left|\left\langle X_{i}, v\right\rangle\right|^{2} / \sigma^{2}\right)\right] \tag{2}\\
& =\prod_{i=1}^{n} \mathbb{E}\left[\exp \left(\left|\left\langle X_{i}, v\right\rangle\right|^{2} / \sigma^{2}\right)\right] \leq 2^{n} \tag{3}
\end{align*}
$$

where the last step follows by sub-Gaussianity if $\left\langle X_{i}, v\right\rangle$. The Chernoff bound then gives $\mathbb{P}\left[v^{\top} M v \geq t\right] \leq$ $2^{n} \exp \left(-n t / \sigma^{2}\right)$.

If we were to follow the same strategy as Lemma 0.1 , the next step would be to union bound over v. Unfortunately, there are infinitely many v so we cannot do this directly. Fortunately, we can get by with only considering a large but finite number of v; we will construct a finite subset $\mathcal{N}_{1 / 4}$ of the unit ball such that

$$
\begin{equation*}
\sup _{v \in \mathcal{N}_{1 / 4}} v^{\top} M v \geq \frac{1}{2} \sup _{\|v\|_{2} \leq 1} v^{\top} M v \tag{4}
\end{equation*}
$$

Our construction follows Section 5.2.2 of ?. Let $\mathcal{N}_{1 / 4}$ be a maximal set of points in the unit ball such that $\|x-y\|_{2} \geq 1 / 4$ for all distinct $x, y \in \mathcal{N}_{1 / 4}$. We observe that $\left|\mathcal{N}_{1 / 4}\right| \leq 9^{d}$; this is because the balls of radius $1 / 8$ around each point in $\mathcal{N}_{1 / 4}$ are disjoint and contained in a ball of radius $9 / 8$.

To establish (4), let v maximize $v^{\top} M v$ over $\|v\|_{2} \leq 1$ and let u maximize $v^{\top} M v$ over $\mathcal{N}_{1 / 4}$. Then

$$
\begin{align*}
\left|v^{\top} M v-u^{\top} M u\right| & =\left|v^{\top} M(v-u)+u^{\top} M(v-u)\right| \tag{5}\\
& \leq\left(\|v\|_{2}+\|u\|_{2}\right)\|M\|\|v-u\|_{2} \tag{6}\\
& \leq 2 \cdot\|M\| \cdot(1 / 4)=\|M\| / 2 . \tag{7}
\end{align*}
$$

Since $v^{\top} M v=\|M\|$, we obtain $\left|\|M\|-u^{\top} M u\right| \leq\|M\| / 2$, whence $u^{\top} M u \geq\|M\| / 2$, which establishes (4). We are now ready to apply the union bound: Recall that from the Chernoff bound on $v^{\top} M v$, we had $\mathbb{P}\left[v^{\top} M v \geq t\right] \leq 2^{n} \exp \left(-n t / \sigma^{2}\right)$, so

$$
\begin{equation*}
\mathbb{P}\left[\sup _{v \in \mathcal{N}_{1 / 4}} v^{\top} M v \geq t\right] \leq 9^{d} 2^{n} \exp \left(-n t / \sigma^{2}\right) \tag{8}
\end{equation*}
$$

Solving for this quantity to equal δ, we obtain

$$
\begin{equation*}
t=\frac{\sigma^{2}}{n} \cdot(n \log (2)+d \log (9)+\log (1 / \delta))=\mathcal{O}\left(\sigma^{2} \cdot(1+d / n+\log (1 / \delta) / n)\right), \tag{9}
\end{equation*}
$$

as was to be shown.
VC dimension. Our final example will be important in the following section; it concerns how quickly a family of events with certain geometric structure converges to its expectation. Let \mathcal{H} be a collection of functions $f: \mathcal{X} \rightarrow\{0,1\}$, and define the $V C$ dimension $\operatorname{vc}(\mathcal{H})$ to be the maximum d for which there are points x_{1}, \ldots, x_{d} such that $\left(f\left(x_{1}\right), \ldots, f\left(x_{d}\right)\right)$ can take on all 2^{d} possible values. For instance:

- If $\mathcal{X}=\mathbb{R}$ and $\mathcal{H}=\{\mathbb{I}[x \geq \tau] \mid \tau \in \mathbb{R}\}$ is the family of threshold functions, then $\operatorname{vc}(\mathcal{H})=1$.
- If $\mathcal{X}=\mathbb{R}^{d}$ and $\mathcal{H}=\left\{\mathbb{I}[\langle x, v\rangle \geq \tau] \mid v \in \mathbb{R}^{d}, \tau \in \mathbb{R}\right\}$ is the family of half-spaces, then $\operatorname{vc}(\mathcal{H})=d+1$.

Additionally, for a point set $S=\left\{x_{1}, \ldots, x_{n}\right\}$, let $V_{\mathcal{H}}(S)$ denote the number of distinct values of $\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ and $V_{\mathcal{H}}(n)=\max \left\{V_{\mathcal{H}}(S)| | S \mid=n\right\}$. Thus the VC dimension is exactly the maximum n such that $V_{\mathcal{H}}(n)=2^{n}$.

We will show the following:
Proposition 0.3. Let \mathcal{H} be a family of functions with $\mathrm{vc}(H)=d$, and let $X_{1}, \ldots, X_{n} \sim p$ be i.i.d. random variables over \mathcal{X}. For $f: \mathcal{X} \rightarrow\{0,1\}$, let $\nu_{n}(f)=\frac{1}{n}\left|\left\{i \mid f\left(X_{i}\right)=1\right\}\right|$ and let $\nu(f)=p(f(X)=1)$. Then

$$
\begin{equation*}
\sup _{f \in \mathcal{H}}\left|\nu_{n}(f)-\nu(f)\right| \leq \mathcal{O}\left(\sqrt{\frac{d+\log (1 / \delta)}{n}}\right) \tag{10}
\end{equation*}
$$

with probability $1-\delta$.
We will prove a weaker result that has a $d \log (n)$ factor instead of d, and which bounds the expected value rather than giving a probability $1-\delta$ bound. The $\log (1 / \delta)$ tail bound follows from McDiarmid's inequality, which is a standard result in a probability course but requires tools that would take us too far afield. Removing the $\log (n)$ factor is slightly more involved and uses a tool called chaining.
Proof of Proposition 0.3. The importance of the VC dimension for our purposes lies in the Sauer-Shelah lemma:
Lemma 0.4 (Sauer-Shelah). Let $d=\operatorname{vc}(\mathcal{H})$. Then $V_{\mathcal{H}}(n) \leq \sum_{k=0}^{d}\binom{n}{k} \leq 2 n^{d}$.
It is tempting to union bound over the at most $V_{\mathcal{H}}(n)$ distinct values of $\left(f\left(X_{1}\right), \ldots, f\left(X_{n}\right)\right)$; however, this doesn't work because revealing X_{1}, \ldots, X_{n} uses up all of the randomness in the problem and we have no randomness left from which to get a concentration inequality! We will instead have to introduce some new randomness using a technique called symmetrization.

Regarding the expectation, let $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ be independent copies of X_{1}, \ldots, X_{n} and let $\nu_{n}^{\prime}(f)$ denote the version of $\nu_{n}(f)$ computed with the X_{i}^{\prime}. Then we have

$$
\begin{align*}
\mathbb{E}_{X}\left[\sup _{f \in \mathcal{H}}\left|\nu_{n}(f)-\nu(f)\right|\right] & \leq \mathbb{E}_{X, X^{\prime}}\left[\sup _{f \in \mathcal{H}}\left|\nu_{n}(f)-\nu_{n}^{\prime}(f)\right|\right] \tag{11}\\
& =\frac{1}{n} \mathbb{E}_{X, X^{\prime}}\left[\sup _{f \in \mathcal{H}}\left|\sum_{i=1}^{n} f\left(X_{i}\right)-f\left(X_{i}^{\prime}\right)\right| .\right. \tag{12}
\end{align*}
$$

We can create our new randomness by noting that since X_{i} and X_{i}^{\prime} are identically distributed, $f\left(X_{i}\right)-f\left(X_{i}^{\prime}\right)$ has the same distribution as $s_{i}\left(f\left(X_{i}\right)-f\left(X_{i}^{\prime}\right)\right)$, where s_{i} is a random sign variable that is ± 1 with equal probability. Introducing these variables and continuing the inequality, we thus have

$$
\begin{equation*}
\frac{1}{n} \mathbb{E}_{X, X^{\prime}}\left[\sup _{f \in \mathcal{H}}\left|\sum_{i=1}^{n} f\left(X_{i}\right)-f\left(X_{i}^{\prime}\right)\right|\right]=\frac{1}{n} \mathbb{E}_{X, X^{\prime}, s}\left[\sup _{f \in \mathcal{H}}\left|\sum_{i=1}^{n} s_{i}\left(f\left(X_{i}\right)-f\left(X_{i}^{\prime}\right)\right)\right|\right] . \tag{13}
\end{equation*}
$$

We now have enough randomness to exploit the Sauer-Shelah lemma. If we fix X and X^{\prime}, note that the quantities $f\left(X_{i}\right)-f\left(X_{i}^{\prime}\right)$ take values in $[-1,1]$ and collectively can take on at most $V_{\mathcal{H}}(n)^{2}=\mathcal{O}\left(n^{2 d}\right)$ values. But for fixed X, X^{\prime}, the quantities $s_{i}\left(f\left(X_{i}\right)-f\left(X_{i}^{\prime}\right)\right)$ are independent, zero-mean, bounded random variables and hence for fixed f we have $\mathbb{P}\left[\sum_{i} s_{i}\left(f\left(X_{i}\right)-f\left(X_{i}^{\prime}\right)\right) \geq t\right] \leq \exp \left(-t^{2} / 9 n\right)$ by Hoeffding's inequality. Union bounding over the $\mathcal{O}\left(n^{2 d}\right)$ effectively distinct f, we obtain

$$
\begin{equation*}
\mathbb{P}_{s}\left[\sup _{f \in \mathcal{H}}\left|\sum_{i} s_{i}\left(f\left(X_{i}\right)-f\left(X_{i}^{\prime}\right)\right)\right| \geq t \mid X, X^{\prime}\right] \leq \mathcal{O}\left(n^{2 d}\right) \exp \left(-t^{2} / 9 n\right) \tag{14}
\end{equation*}
$$

This is small as long as $t \gg \sqrt{n d \log n}$, so (13) is $\mathcal{O}(\sqrt{d \log n / n})$, as claimed.
A particular consequence of Proposition 0.3 is the Dvoretzky-Kiefer-Wolfowitz inequality:
Proposition 0.5 (DKW inequality). For a distribution p on \mathbb{R} and i.d.d. samples $X_{1}, \ldots, X_{n} \sim p$, define the empirical cumulative density function as $F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left[X_{i} \leq x\right]$, and the population cumulative density function as $F(x)=p(X \leq x)$. Then $\mathbb{P}\left[\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right| \geq t\right] \leq 2 e^{-2 n t^{2}}$.

This follows from applying Proposition 0.3 to the family of threshold functions.

