
[Lecture 4]

0.0.1 Applications of concentration inequalities

Having developed the machinery above, we next apply it to a few concrete problems to give a sense of how
to use it. A key lemma which we will use repeatedly is the union bound, which states that if E1, . . . , En

are events with probabilities π1, . . . , πn, then the probability of E1 ∪ · · · ∪ En is at most π1 + · · ·+ πn. A
corollary is that if n events each have probability � 1/n, then there is a large probability that none of the
events occur.

Maximum of sub-Gaussians. Suppose that X1, . . . , Xn are mean-zero sub-Gaussian with parameter σ,
and let Y = maxn

i=1Xi. How large is Y ? We will show the following:

Lemma 0.1. The random variable Y is O(σ
√

log(n/δ)) with probability 1− δ.

Proof. By the Chernoff bound for sub-Gaussians, we have that P[Xi ≥ σ
√

6 log(n/δ)] ≤ exp(− log(n/δ)) =

δ/n. Thus by the union bound, the probability that any of the Xi exceed σ
√

6 log(n/δ) is at most δ. Thus

with probability at least 1− δ we have Y ≤ σ
√

6 log(n/δ), as claimed.

Lemma 0.1 illustrates a typical proof strategy: We first decompose the event we care about as a union of
simpler events, then show that each individual event holds with high probability by exploiting independence.
As long as the “failure probability” of a single event is much small than the inverse of the number of events,
we obtain a meaningful bound. In fact, this strategy can be employed even for an infinite number of events
by discretizing to an “ε-net”, as we will see below:

Eigenvalue of random matrix. Let X1, . . . , Xn be independent zero-mean sub-Gaussian variables in Rd

with parameter σ, and let M = 1
n

∑n
i=1XiX

>
i . How large is ‖M‖, the maximum eigenvalue of M? We will

show:

Lemma 0.2. The maximum eigenvalue ‖M‖ is O(σ2 · (1 + d/n+ log(1/δ)/n)) with probability 1− δ.

Proof. The maximum eigenvalue can be expressed as

‖M‖ = sup
‖v‖2≤1

v>Mv = sup
‖v‖2≤1

1

n

n∑
i=1

|〈Xi, v〉|2. (1)

The quantity inside the sup is attractive to analyze because it is an average of independent random variables.
Indeed, we have

E[exp(
n

σ2
v>Mv)] = E[exp(

n∑
i=1

|〈Xi, v〉|2/σ2)] (2)

=

n∏
i=1

E[exp(|〈Xi, v〉|2/σ2)] ≤ 2n, (3)

where the last step follows by sub-Gaussianity if 〈Xi, v〉. The Chernoff bound then gives P[v>Mv ≥ t] ≤
2n exp(−nt/σ2).

If we were to follow the same strategy as Lemma 0.1, the next step would be to union bound over v.
Unfortunately, there are infinitely many v so we cannot do this directly. Fortunately, we can get by with only
considering a large but finite number of v; we will construct a finite subset N1/4 of the unit ball such that

sup
v∈N1/4

v>Mv ≥ 1

2
sup
‖v‖2≤1

v>Mv. (4)

Our construction follows Section 5.2.2 of ?. Let N1/4 be a maximal set of points in the unit ball such that

‖x− y‖2 ≥ 1/4 for all distinct x, y ∈ N1/4. We observe that |N1/4| ≤ 9d; this is because the balls of radius
1/8 around each point in N1/4 are disjoint and contained in a ball of radius 9/8.
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To establish (4), let v maximize v>Mv over ‖v‖2 ≤ 1 and let u maximize v>Mv over N1/4. Then

|v>Mv − u>Mu| = |v>M(v − u) + u>M(v − u)| (5)

≤ (‖v‖2 + ‖u‖2)‖M‖‖v − u‖2 (6)

≤ 2 · ‖M‖ · (1/4) = ‖M‖/2. (7)

Since v>Mv = ‖M‖, we obtain |‖M‖ − u>Mu| ≤ ‖M‖/2, whence u>Mu ≥ ‖M‖/2, which establishes
(4). We are now ready to apply the union bound: Recall that from the Chernoff bound on v>Mv, we had
P[v>Mv ≥ t] ≤ 2n exp(−nt/σ2), so

P[ sup
v∈N1/4

v>Mv ≥ t] ≤ 9d2n exp(−nt/σ2). (8)

Solving for this quantity to equal δ, we obtain

t =
σ2

n
· (n log(2) + d log(9) + log(1/δ)) = O(σ2 · (1 + d/n+ log(1/δ)/n)), (9)

as was to be shown.

VC dimension. Our final example will be important in the following section; it concerns how quickly
a family of events with certain geometric structure converges to its expectation. Let H be a collection of
functions f : X → {0, 1}, and define the VC dimension vc(H) to be the maximum d for which there are
points x1, . . . , xd such that (f(x1), . . . , f(xd)) can take on all 2d possible values. For instance:

• If X = R and H = {I[x ≥ τ ] | τ ∈ R} is the family of threshold functions, then vc(H) = 1.

• If X = Rd and H = {I[〈x, v〉 ≥ τ ] | v ∈ Rd, τ ∈ R} is the family of half-spaces, then vc(H) = d+ 1.

Additionally, for a point set S = {x1, . . . , xn}, let VH(S) denote the number of distinct values of (f(x1), . . . , f(xn))
and VH(n) = max{VH(S) | |S| = n}. Thus the VC dimension is exactly the maximum n such that VH(n) = 2n.

We will show the following:

Proposition 0.3. Let H be a family of functions with vc(H) = d, and let X1, . . . , Xn ∼ p be i.i.d. random
variables over X . For f : X → {0, 1}, let νn(f) = 1

n |{i | f(Xi) = 1}| and let ν(f) = p(f(X) = 1). Then

sup
f∈H
|νn(f)− ν(f)| ≤ O

(√d+ log(1/δ)

n

)
(10)

with probability 1− δ.

We will prove a weaker result that has a d log(n) factor instead of d, and which bounds the expected
value rather than giving a probability 1 − δ bound. The log(1/δ) tail bound follows from McDiarmid’s
inequality, which is a standard result in a probability course but requires tools that would take us too far
afield. Removing the log(n) factor is slightly more involved and uses a tool called chaining.

Proof of Proposition 0.3. The importance of the VC dimension for our purposes lies in the Sauer-Shelah
lemma:

Lemma 0.4 (Sauer-Shelah). Let d = vc(H). Then VH(n) ≤
∑d

k=0

(
n
k

)
≤ 2nd.

It is tempting to union bound over the at most VH(n) distinct values of (f(X1), . . . , f(Xn)); however,
this doesn’t work because revealing X1, . . . , Xn uses up all of the randomness in the problem and we have no
randomness left from which to get a concentration inequality! We will instead have to introduce some new
randomness using a technique called symmetrization.
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Regarding the expectation, let X ′1, . . . , X
′
n be independent copies of X1, . . . , Xn and let ν′n(f) denote the

version of νn(f) computed with the X ′i. Then we have

EX [sup
f∈H
|νn(f)− ν(f)|] ≤ EX,X′ [sup

f∈H
|νn(f)− ν′n(f)|] (11)

=
1

n
EX,X′ [sup

f∈H
|

n∑
i=1

f(Xi)− f(X ′i)|. (12)

We can create our new randomness by noting that since Xi and X ′i are identically distributed, f(Xi)− f(X ′i)
has the same distribution as si(f(Xi) − f(X ′i)), where si is a random sign variable that is ±1 with equal
probability. Introducing these variables and continuing the inequality, we thus have

1

n
EX,X′ [sup

f∈H
|

n∑
i=1

f(Xi)− f(X ′i)|] =
1

n
EX,X′,s[sup

f∈H
|

n∑
i=1

si(f(Xi)− f(X ′i))|]. (13)

We now have enough randomness to exploit the Sauer-Shelah lemma. If we fix X and X ′, note that the
quantities f(Xi)− f(X ′i) take values in [−1, 1] and collectively can take on at most VH(n)2 = O(n2d) values.
But for fixed X,X ′, the quantities si(f(Xi)− f(X ′i)) are independent, zero-mean, bounded random variables
and hence for fixed f we have P[

∑
i si(f(Xi)− f(X ′i)) ≥ t] ≤ exp(−t2/9n) by Hoeffding’s inequality. Union

bounding over the O(n2d) effectively distinct f , we obtain

Ps[sup
f∈H
|
∑
i

si(f(Xi)− f(X ′i))| ≥ t | X,X ′] ≤ O(n2d) exp(−t2/9n). (14)

This is small as long as t�
√
nd log n, so (13) is O(

√
d log n/n), as claimed.

A particular consequence of Proposition 0.3 is the Dvoretzky-Kiefer-Wolfowitz inequality :

Proposition 0.5 (DKW inequality). For a distribution p on R and i.d.d. samples X1, . . . , Xn ∼ p, define the
empirical cumulative density function as Fn(x) = 1

n

∑n
i=1 I[Xi ≤ x], and the population cumulative density

function as F (x) = p(X ≤ x). Then P[supx∈R |Fn(x)− F (x)| ≥ t] ≤ 2e−2nt
2

.

This follows from applying Proposition 0.3 to the family of threshold functions.
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