[Lecture 4]

0.0.1 Applications of concentration inequalities

Having developed the machinery above, we next apply it to a few concrete problems to give a sense of how to use it. A key lemma which we will use repeatedly is the union bound, which states that if E_1, \ldots, E_n are events with probabilities π_1, \ldots, π_n , then the probability of $E_1 \cup \cdots \cup E_n$ is at most $\pi_1 + \cdots + \pi_n$. A corollary is that if n events each have probability $\ll 1/n$, then there is a large probability that none of the events occur.

Maximum of sub-Gaussians. Suppose that X_1, \ldots, X_n are mean-zero sub-Gaussian with parameter σ , and let $Y = \max_{i=1}^n X_i$. How large is Y? We will show the following:

Lemma 0.1. The random variable Y is $\mathcal{O}(\sigma\sqrt{\log(n/\delta)})$ with probability $1-\delta$.

Proof. By the Chernoff bound for sub-Gaussians, we have that $\mathbb{P}[X_i \ge \sigma \sqrt{6 \log(n/\delta)}] \le \exp(-\log(n/\delta)) = \delta/n$. Thus by the union bound, the probability that any of the X_i exceed $\sigma \sqrt{6 \log(n/\delta)}$ is at most δ . Thus with probability at least $1 - \delta$ we have $Y \le \sigma \sqrt{6 \log(n/\delta)}$, as claimed.

Lemma 0.1 illustrates a typical proof strategy: We first decompose the event we care about as a union of simpler events, then show that each individual event holds with high probability by exploiting independence. As long as the "failure probability" of a single event is much small than the inverse of the number of events, we obtain a meaningful bound. In fact, this strategy can be employed even for an infinite number of events by discretizing to an " ϵ -net", as we will see below:

Eigenvalue of random matrix. Let X_1, \ldots, X_n be independent zero-mean sub-Gaussian variables in \mathbb{R}^d with parameter σ , and let $M = \frac{1}{n} \sum_{i=1}^n X_i X_i^{\top}$. How large is ||M||, the maximum eigenvalue of M? We will show:

Lemma 0.2. The maximum eigenvalue ||M|| is $\mathcal{O}(\sigma^2 \cdot (1 + d/n + \log(1/\delta)/n))$ with probability $1 - \delta$.

Proof. The maximum eigenvalue can be expressed as

$$\|M\| = \sup_{\|v\|_2 \le 1} v^{\top} M v = \sup_{\|v\|_2 \le 1} \frac{1}{n} \sum_{i=1}^n |\langle X_i, v \rangle|^2.$$
(1)

The quantity inside the sup is attractive to analyze because it is an average of independent random variables. Indeed, we have

$$\mathbb{E}[\exp(\frac{n}{\sigma^2}v^{\top}Mv)] = \mathbb{E}[\exp(\sum_{i=1}^{n} |\langle X_i, v \rangle|^2 / \sigma^2)]$$
(2)

$$=\prod_{i=1}^{n} \mathbb{E}[\exp(|\langle X_i, v \rangle|^2 / \sigma^2)] \le 2^n,$$
(3)

where the last step follows by sub-Gaussianity if $\langle X_i, v \rangle$. The Chernoff bound then gives $\mathbb{P}[v^\top M v \ge t] \le 2^n \exp(-nt/\sigma^2)$.

If we were to follow the same strategy as Lemma 0.1, the next step would be to union bound over v. Unfortunately, there are infinitely many v so we cannot do this directly. Fortunately, we can get by with only considering a large but finite number of v; we will construct a finite subset $\mathcal{N}_{1/4}$ of the unit ball such that

$$\sup_{v \in \mathcal{N}_{1/4}} v^{\top} M v \ge \frac{1}{2} \sup_{\|v\|_2 \le 1} v^{\top} M v.$$
(4)

Our construction follows Section 5.2.2 of ?. Let $\mathcal{N}_{1/4}$ be a maximal set of points in the unit ball such that $||x - y||_2 \ge 1/4$ for all distinct $x, y \in \mathcal{N}_{1/4}$. We observe that $|\mathcal{N}_{1/4}| \le 9^d$; this is because the balls of radius 1/8 around each point in $\mathcal{N}_{1/4}$ are disjoint and contained in a ball of radius 9/8.

To establish (4), let v maximize $v^{\top}Mv$ over $||v||_2 \leq 1$ and let u maximize $v^{\top}Mv$ over $\mathcal{N}_{1/4}$. Then

$$|v^{\top}Mv - u^{\top}Mu| = |v^{\top}M(v - u) + u^{\top}M(v - u)|$$
(5)

$$\leq (\|v\|_2 + \|u\|_2) \|M\| \|v - u\|_2 \tag{6}$$

$$\leq 2 \cdot \|M\| \cdot (1/4) = \|M\|/2. \tag{7}$$

Since $v^{\top}Mv = ||M||$, we obtain $|||M|| - u^{\top}Mu| \leq ||M||/2$, whence $u^{\top}Mu \geq ||M||/2$, which establishes (4). We are now ready to apply the union bound: Recall that from the Chernoff bound on $v^{\top}Mv$, we had $\mathbb{P}[v^{\top}Mv \geq t] \leq 2^n \exp(-nt/\sigma^2)$, so

$$\mathbb{P}[\sup_{v \in \mathcal{N}_{1/4}} v^{\top} M v \ge t] \le 9^d 2^n \exp(-nt/\sigma^2).$$
(8)

Solving for this quantity to equal δ , we obtain

$$t = \frac{\sigma^2}{n} \cdot (n\log(2) + d\log(9) + \log(1/\delta)) = \mathcal{O}(\sigma^2 \cdot (1 + d/n + \log(1/\delta)/n)),$$
(9)

as was to be shown.

VC dimension. Our final example will be important in the following section; it concerns how quickly a family of events with certain geometric structure converges to its expectation. Let \mathcal{H} be a collection of functions $f : \mathcal{X} \to \{0, 1\}$, and define the *VC dimension* $\mathsf{vc}(\mathcal{H})$ to be the maximum *d* for which there are points x_1, \ldots, x_d such that $(f(x_1), \ldots, f(x_d))$ can take on all 2^d possible values. For instance:

- If $\mathcal{X} = \mathbb{R}$ and $\mathcal{H} = \{\mathbb{I}[x \ge \tau] \mid \tau \in \mathbb{R}\}$ is the family of threshold functions, then $\mathsf{vc}(\mathcal{H}) = 1$.
- If $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{H} = \{\mathbb{I}[\langle x, v \rangle \ge \tau] \mid v \in \mathbb{R}^d, \tau \in \mathbb{R}\}\$ is the family of half-spaces, then $\mathsf{vc}(\mathcal{H}) = d + 1$.

Additionally, for a point set $S = \{x_1, \ldots, x_n\}$, let $V_{\mathcal{H}}(S)$ denote the number of distinct values of $(f(x_1), \ldots, f(x_n))$ and $V_{\mathcal{H}}(n) = \max\{V_{\mathcal{H}}(S) \mid |S| = n\}$. Thus the VC dimension is exactly the maximum n such that $V_{\mathcal{H}}(n) = 2^n$. We will show the following:

0

Proposition 0.3. Let \mathcal{H} be a family of functions with $\mathsf{vc}(\mathcal{H}) = d$, and let $X_1, \ldots, X_n \sim p$ be i.i.d. random variables over \mathcal{X} . For $f : \mathcal{X} \to \{0, 1\}$, let $\nu_n(f) = \frac{1}{n} |\{i \mid f(X_i) = 1\}|$ and let $\nu(f) = p(f(X) = 1)$. Then

$$\sup_{f \in \mathcal{H}} |\nu_n(f) - \nu(f)| \le \mathcal{O}\left(\sqrt{\frac{d + \log(1/\delta)}{n}}\right) \tag{10}$$

with probability $1 - \delta$.

We will prove a weaker result that has a $d\log(n)$ factor instead of d, and which bounds the expected value rather than giving a probability $1 - \delta$ bound. The $\log(1/\delta)$ tail bound follows from *McDiarmid's inequality*, which is a standard result in a probability course but requires tools that would take us too far afield. Removing the $\log(n)$ factor is slightly more involved and uses a tool called *chaining*.

Proof of Proposition 0.3. The importance of the VC dimension for our purposes lies in the Sauer-Shelah lemma:

Lemma 0.4 (Sauer-Shelah). Let $d = \mathsf{vc}(\mathcal{H})$. Then $V_{\mathcal{H}}(n) \leq \sum_{k=0}^{d} {n \choose k} \leq 2n^{d}$.

It is tempting to union bound over the at most $V_{\mathcal{H}}(n)$ distinct values of $(f(X_1), \ldots, f(X_n))$; however, this doesn't work because revealing X_1, \ldots, X_n uses up all of the randomness in the problem and we have no randomness left from which to get a concentration inequality! We will instead have to introduce some new randomness using a technique called *symmetrization*.

Regarding the expectation, let X'_1, \ldots, X'_n be independent copies of X_1, \ldots, X_n and let $\nu'_n(f)$ denote the version of $\nu_n(f)$ computed with the X'_i . Then we have

$$\mathbb{E}_{X}[\sup_{f \in \mathcal{H}} |\nu_{n}(f) - \nu(f)|] \leq \mathbb{E}_{X,X'}[\sup_{f \in \mathcal{H}} |\nu_{n}(f) - \nu'_{n}(f)|]$$
(11)

$$= \frac{1}{n} \mathbb{E}_{X,X'} [\sup_{f \in \mathcal{H}} | \sum_{i=1}^{n} f(X_i) - f(X'_i) |.$$
(12)

We can create our new randomness by noting that since X_i and X'_i are identically distributed, $f(X_i) - f(X'_i)$ has the same distribution as $s_i(f(X_i) - f(X'_i))$, where s_i is a random sign variable that is ± 1 with equal probability. Introducing these variables and continuing the inequality, we thus have

$$\frac{1}{n}\mathbb{E}_{X,X'}[\sup_{f\in\mathcal{H}}|\sum_{i=1}^{n}f(X_i) - f(X'_i)|] = \frac{1}{n}\mathbb{E}_{X,X',s}[\sup_{f\in\mathcal{H}}|\sum_{i=1}^{n}s_i(f(X_i) - f(X'_i))|].$$
(13)

We now have enough randomness to exploit the Sauer-Shelah lemma. If we fix X and X', note that the quantities $f(X_i) - f(X'_i)$ take values in [-1, 1] and collectively can take on at most $V_{\mathcal{H}}(n)^2 = \mathcal{O}(n^{2d})$ values. But for fixed X, X', the quantities $s_i(f(X_i) - f(X'_i))$ are independent, zero-mean, bounded random variables and hence for fixed f we have $\mathbb{P}[\sum_i s_i(f(X_i) - f(X'_i)) \ge t] \le \exp(-t^2/9n)$ by Hoeffding's inequality. Union bounding over the $\mathcal{O}(n^{2d})$ effectively distinct f, we obtain

$$\mathbb{P}_{s}[\sup_{f \in \mathcal{H}} |\sum_{i} s_{i}(f(X_{i}) - f(X_{i}'))| \ge t | X, X'] \le \mathcal{O}(n^{2d}) \exp(-t^{2}/9n).$$
(14)

This is small as long as $t \gg \sqrt{nd \log n}$, so (13) is $\mathcal{O}(\sqrt{d \log n/n})$, as claimed.

A particular consequence of Proposition 0.3 is the Dvoretzky-Kiefer-Wolfowitz inequality:

Proposition 0.5 (DKW inequality). For a distribution p on \mathbb{R} and i.d.d. samples $X_1, \ldots, X_n \sim p$, define the empirical cumulative density function as $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}[X_i \leq x]$, and the population cumulative density function as $F(x) = p(X \leq x)$. Then $\mathbb{P}[\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \geq t] \leq 2e^{-2nt^2}$.

This follows from applying Proposition 0.3 to the family of threshold functions.