[Lecture 4]

0.0.1 Applications of concentration inequalities

Having developed the machinery above, we next apply it to a few concrete problems to give a sense of how
to use it. A key lemma which we will use repeatedly is the union bound, which states that if Ey,..., E,
are events with probabilities my, ..., m,, then the probability of Fy U---U E,, is at most my + -+ + m,. A
corollary is that if n events each have probability < 1/n, then there is a large probability that none of the
events occur.

Maximum of sub-Gaussians. Suppose that Xi,..., X,, are mean-zero sub-Gaussian with parameter o,
and let Y = max]_; X;. How large is Y7 We will show the following:

Lemma 0.1. The random variable Y is O(o+/log(n/d)) with probability 1 — 0.

Proof. By the Chernoff bound for sub-Gaussians, we have that P[X; > o1/61og(n/d)] < exp(—log(n/d)) =
d/n. Thus by the union bound, the probability that any of the X; exceed o+/61log(n/d) is at most §. Thus
with probability at least 1 — § we have Y < o4/6log(n/d), as claimed. O

Lemma 0.1 illustrates a typical proof strategy: We first decompose the event we care about as a union of
simpler events, then show that each individual event holds with high probability by exploiting independence.
As long as the “failure probability” of a single event is much small than the inverse of the number of events,
we obtain a meaningful bound. In fact, this strategy can be employed even for an infinite number of events
by discretizing to an “e-net”, as we will see below:

Eigenvalue of random matrix. Let X;,..., X, be independent zero-mean sub-Gaussian variables in R¢
with parameter o, and let M = L 3" | X;X.. How large is || M|, the maximum eigenvalue of M? We will
show:

Lemma 0.2. The mazimum eigenvalue |M|| is O(c? - (1 + d/n + log(1/8)/n)) with probability 1 — 4.
Proof. The maximum eigenvalue can be expressed as
1 n
[M||= sup v'Mv= sup = [(X;v)* (1)
”'UH2§1 HUH2§1 n i=1

The quantity inside the sup is attractive to analyze because it is an average of independent random variables.
Indeed, we have

E[exp(%vTMv)] = IE[exp(z (X3, 0)[? /o)) (2)
= HE[eXp(|<Xi,v>l2/02)] <2 3)

where the last step follows by sub-Gaussianity if (X;,v). The Chernoff bound then gives Plv" Mv > t] <
2" exp(—nt/o?).

If we were to follow the same strategy as Lemma 0.1, the next step would be to union bound over v.
Unfortunately, there are infinitely many v so we cannot do this directly. Fortunately, we can get by with only
considering a large but finite number of v; we will construct a finite subset A /4 of the unit ball such that

1
sup v'Mv>= sup v Mu. (4)
vEN1 /4 llvll2<1
Our construction follows Section 5.2.2 of 7. Let N} /4 be a maximal set of points in the unit ball such that

lz —yll2 > 1/4 for all distinct z,y € Ny/4. We observe that [N7 4| < 9%: this is because the balls of radius
1/8 around each point in Nj,4 are disjoint and contained in a ball of radius 9/8.



To establish (4), let v maximize v Mv over ||[v[2 < 1 and let u maximize v’ Mv over N/4. Then

|o" Mv —u" Mu| =o' M(v—u)+u" M —u)]| (5)
< ([vll2 + llull2)[IM][]lv — ull2 (6)
<2-[|M]| - (1/4) = [[M]]/2. (7)

Since v Mv = ||M]||, we obtain ||M|| — u" Mu| < ||[M||/2, whence u" Mu > |[M||/2, which establishes
(4). We are now ready to apply the union bound: Recall that from the Chernoff bound on v Mwv, we had
Plv" Mv > t] < 2" exp(—nt/o?), so

P[ sup v' Mo > t] < 992" exp(—nt/c?). (8)
UEN1/4

Solving for this quantity to equal §, we obtain

t= %2 - (nlog(2) + dlog(9) +log(1/8)) = O(c* - (1 +d/n + log(1/8)/n)), (9)

as was to be shown. O

VC dimension. Our final example will be important in the following section; it concerns how quickly
a family of events with certain geometric structure converges to its expectation. Let H be a collection of
functions f : X — {0,1}, and define the VC dimension vc(H) to be the maximum d for which there are
points 1, ..., x4 such that (f(z1),..., f(zq)) can take on all 2¢ possible values. For instance:

o If ¥ =R and H = {I[z > 7] | 7 € R} is the family of threshold functions, then vc(#) = 1.
o If ¥ =R? and H = {I[{(z,v) > 7] | v € R%, 7 € R} is the family of half-spaces, then vc(H) = d + 1.

Additionally, for a point set S = {1, ..., 2, }, let V4 (S) denote the number of distinct values of (f(z1), ..., f(zn))
and Vi (n) = max{Vy(S) | |S| = n}. Thus the VC dimension is exactly the maximum n such that V3 (n) = 2™
We will show the following:

Proposition 0.3. Let H be a family of functions with ve(H) = d, and let X1,...,X,, ~ p be i.i.d. random
variables over X. For f : X — {0,1}, let v,,(f) = L|{i | f(Xi) =1}| and let v(f) = p(f(X) =1). Then

d +log(1/9)

=) (10

sup [vn (f) — v(f)] < O(

feH
with probability 1 — 9.

We will prove a weaker result that has a dlog(n) factor instead of d, and which bounds the expected
value rather than giving a probability 1 — § bound. The log(1/4) tail bound follows from McDiarmid’s
inequality, which is a standard result in a probability course but requires tools that would take us too far
afield. Removing the log(n) factor is slightly more involved and uses a tool called chaining.

Proof of Proposition 0.3. The importance of the VC dimension for our purposes lies in the Sauer-Shelah
lemma:

Lemma 0.4 (Sauer-Shelah). Let d = ve(H). Then Vi (n) < ZZ:O (3) < 2nd.

It is tempting to union bound over the at most V3 (n) distinct values of (f(X1),..., f(X,)); however,
this doesn’t work because revealing X7, ..., X,, uses up all of the randomness in the problem and we have no
randomness left from which to get a concentration inequality! We will instead have to introduce some new
randomness using a technique called symmetrization.



Regarding the expectation, let X7,..., X} be independent copies of Xy,..., X, and let v/, (f) denote the
version of v, (f) computed with the X/. Then we have

Exlsup [v,(f) = (/)] € Exxo[sup v (F) = (1) ()
fer feH
= B lsup |3 £~ F(X0) (12)

We can create our new randomness by noting that since X; and X/ are identically distributed, f(X;) — f(X})

(2

has the same distribution as s;(f(X;) — f(X})), where s; is a random sign variable that is £1 with equal

3
probability. Introducing these variables and continuing the inequality, we thus have

n

Ly xofsup |57 F(X0) = F(XDN) = ~Exxrfsup | S si(F(X0) — FXI)- (13)
n fer n fen i

We now have enough randomness to exploit the Sauer-Shelah lemma. If we fix X and X', note that the
quantities f(X;) — f(X!) take values in [~1, 1] and collectively can take on at most V3 (n)? = O(n??) values.
But for fixed X, X', the quantities s;(f(X;) — f(X/)) are independent, zero-mean, bounded random variables
and hence for fixed f we have P}, s;(f(X;) — f(X])) > t] < exp(—t*/9n) by Hoeffding’s inequality. Union
bounding over the O(n??) effectively distinct f, we obtain

Py[sup | Y s:(f(X:) = f(X])| > ¢ | X, X'] < O(n*?) exp(~t* /9n). (14)
fen 5
This is small as long as t > v/ndlogn, so (13) is O(y/dlogn/n), as claimed. O

A particular consequence of Proposition 0.3 is the Dvoretzky-Kiefer- Wolfowitz inequality:

Proposition 0.5 (DKW inequality). For a distribution p on R and i.d.d. samples X1, ..., X, ~ p, define the
empirical cumulative density function as F,(z) = L 3" | 1[X; < ], and the population cumulative density

function as F(x) = p(X < x). Then Plsup,cq|Fa(x) — F(z)| > 1] < 272,

This follows from applying Proposition 0.3 to the family of threshold functions.
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