
[Lecture 3]

0.1 Concentration Inequalities

So far we have only considered the infinite-data limit where we directly observe p̃; but in general we would
like to analyze what happens in finite samples where we only observe X1, . . . , Xn sampled independently
from p̃. In order to do this, we will want to be able to formalize statements such as “if we take the average of
a large number of samples, it converges to the population mean”. In order to do this, we will need a set of
mathematical tools called concentration inequalities. A proper treatment of concentration could itself occupy
an entire course, but we will cover the ideas here that are most relevant for our later analyses. See ?, ?, or ?
for more detailed expositions. Terence Tao also has some well-written lectures notes.

Concentration inequalities usually involve two steps:

1. We establish concentration for a single random variable, in terms of some property of that random
variable.

2. We show that the property composes nicely for products of independent random variables.

A prototypical example (covered below) is showing that (1) a random variable has at most a 1/t2 probability
of being t standard deviations from its mean; and (2) the standard deviation of a sum of n i.i.d. random
variables is

√
n times the standard deviation of a single variable.

The simplest concentration inequality is Markov’s inequality. Consider the following question:

A slot machine has an expected pay-out of $5 (and its payout is always non-negative). What can
we say about the probability that it pays out at least $100?

We observe that the probability must be at most 0.05, since a 0.05 chance of a $100 payout would by itself
already contribute $5 to the expected value. Moreover, this bound is achievable by taking a slot machine
that pays $0 with probability 0.95 and $100 with probability 0.05. Markov’s inequality is the generalization
of this observation:

Theorem 0.1 (Markov’s inequality). Let X be a non-negative random variable with mean µ. Then, P[X ≥
t · µ] ≤ 1

t .

Markov’s inequality accomplishes our first goal of establishing concentration for a single random variable,
but it has two issues: first, the 1

t tail bound decays too slowly in many cases (we instead would like
exponentially decaying tails); second, Markov’s inequality doesn’t compose well and so doesn’t accomplish
our second goal.

We can address both issues by applying Markov’s inequality to some transformed random variable. For
instance, applying Markov’s inequality to the random variable Z = (X − µ)2 yields the stronger Chebyshev
inequality :

Theorem 0.2 (Chebyshev’s inequality). Let X be a real-valued random variable with mean µ and variance
σ2. Then, P[|X − µ| ≥ t · σ] ≤ 1

t2 .

Proof. Since Z = (X − µ)2 is non-negative, we have that P[Z ≥ t2 · σ2] ≤ 1
t2 by Markov’s inequality. Taking

the square-root gives P[|X − µ| ≥ t · σ] ≤ 1
t2 , as was to be shown.

Chebyshev’s inequality improves the 1/t dependence to 1/t2. But more importantly, it gives a bound in
terms of a quantity (the variance σ2) that composes nicely:

Lemma 0.3 (Additivity of variance). Let X1, . . . , Xn be pairwise independent random variables, and let
Var[X] denote the variance of X. Then,

Var[X1 + · · ·+Xn] = Var[X1] + · · ·+ Var[Xn]. (1)

Proof. It suffices by induction to prove this for two random variables. Without loss of generality assume
that both variables have mean zero. Then we have Var[X + Y ] = E[(X + Y )2] = E[X2] + E[Y 2] + 2E[XY ] =
Var[X]+Var[Y ]+2E[X]E[Y ] = Var[X]+Var[Y ], where the second-to-last step uses pairwise independence.
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Chebyshev’s inequality together with Lemma 0.3 together allow us to show that an average of i.i.d. random
variables converges to its mean at a 1/

√
n rate:

Corollary 0.4. Suppose X1, . . . , Xn are drawn i.i.d. from p, where p has mean µ and variance σ2. Also let
S = 1

n (X1 + · · ·+Xn). Then, P[|S − µ|/σ ≥ t/
√
n] ≤ 1/t2.

Proof. Lemma 0.3 implies that Var[S] = σ2/n, from which the result follows by Chebyshev’s inequality.

Higher moments. Chebyshev’s inequality gives bounds in terms of the second moment of X − µ. Can we
do better by considering higher moments such as the 4th moment? Supposing that E[(X − µ)4] ≤ τ4, we do
get the analogous bound P[|X − µ| ≥ t · τ ] ≤ 1/t4. However, the 4th moment doesn’t compose as nicely as
the variance; if X and Y are two independent mean-zero random variables, then we have

E[(X + Y )4] = E[X4] + E[Y 4] + 6E[X2]E[Y 2], (2)

where the E[X2]E[Y 2] can’t be easily dealt with. It is possible to bound higher moments under composition,
for instance using the Rosenthal inequality which states that

E[|
∑
i

Xi|p] ≤ O(p)p
∑
i

E[|Xi|p] +O(
√
p)p(

∑
i

E[X2
i ])p/2 (3)

for independent random variables Xi. Note that the first term on the right-hand-side typically grows as
n · O(p)p while the second term typically grows as O(

√
pn)p.

We will typically not take the Rosenthal approach and instead work with an alternative, nicer object
called the moment generating function:

mX(λ)
def
= E[exp(λ(X − µ))]. (4)

For independent random variables, the moment generating function composes via the identity mX1+···+Xn
(λ) =∏n

i=1mXi
(λ). Applying Markov’s inequality to the moment generating function yields the Chernoff bound :

Theorem 0.5 (Chernoff bound). For a random variable X with moment generating mX(λ), we have

P[X − µ ≥ t] ≤ inf
λ≥0

mX(λ)e−λt. (5)

Proof. By Markov’s inequality, P[X − µ ≥ t] = P[exp(λ(X − µ)) ≥ exp(λt)] ≤ E[exp(λ(X − µ))]/ exp(λt),
which is equal to mX(λ)e−λt by the definition of mX . Taking inf over λ yields the claimed bound.

Sub-exponential and sub-Gaussian distributions. An important special case is sub-exponential ran-
dom variables; recall these are random variables satisfying E[exp(|X − µ|/σ)] ≤ 2. For these, applying the
Chernoff bound with λ = 1/σ yields P[X − µ ≥ t] ≤ 2e−t/σ.

Another special case is sub-Gaussian random variables (those satisfying E[exp((X − µ)2/σ2)] ≤ 2). In
this case, using the inequality ab ≤ a2/4 + b2, we have

mX(λ) = E[exp(λ(X − µ))] ≤ E[exp(λ2σ2/4 + (X − µ)2/σ2)] ≤ 2 exp(λ2σ2/4). (6)

The factor of 2 is pesky and actually we can get the more convenient bound mX(λ) ≤ exp(3λ2σ2/2) (?).
Plugging this into the Chernoff bound yields P[X − µ ≥ t] ≤ exp(3λ2σ2/2− λt); minimizing over λ gives the
optimized bound P[X − µ ≥ t] ≤ exp(−t2/6σ2).

Sub-Gaussians are particularly convenient because the bound mX(λ) ≤ exp(3λ2σ2/2) composes well.
Let X1, . . . , Xn be independent sub-Gaussians with constants σ1, . . . , σn. Then we have mX1+···+Xn

(λ) ≤
exp(3λ2(σ2

1 + · · ·+ σ2
n)/2). We will use this to bound the behavior of sums of bounded random variables

using Hoeffding’s inequality :1

1Most of the constants presented here are suboptimal; we have focused on giving simpler proofs at the expense of sharp
constants.
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Theorem 0.6 (Hoeffding’s inequality). Let X1, . . . , Xn be zero-mean random variables lying in [−M,M ],
and let S = 1

n (X1 + · · ·+Xn). Then, P[S ≥ t] ≤ exp(− ln(2)nt2/6M2) ≤ exp(−nt2/9M2).

Proof. First, note that each Xi is sub-Gaussian with parameter σ = M/
√

ln 2, since E[exp(X2
i /σ

2)] ≤
exp(M2/σ2) = exp(ln(2)) = 2. We thus have mXi

(λ) ≤ exp(3λ2M2/2 ln 2), and so by the multiplicativity of
moment generating functions we obtain mS(λ) ≤ exp(3λ2M2/(2n ln 2)). Plugging into Chernoff’s bound and
optimizing λ as before yields P[S ≥ t] ≤ exp(− ln(2)nt2/6M2) as claimed.

Hoeffding’s inequality shows that a sum of independent random variables converges to its mean at a
1/
√
n rate, with tails that decay as fast as a Gaussian as long as each of the individual variables is bounded.

Compare this to the 1/t2 decay that we obtained earlier through Chebyshev’s inequality.

Cumulants. The moment generating function is a convenient tool because it multiplies over independent
random variables. However, its existence requires that X already have thin tails, since E[exp(λX)] must be
finite. For heavy-tailed distributions a (laborious) alternative is to use cumulants.

The cumulant function is defined as

KX(λ)
def
= logE[exp(λX)]. (7)

Note this is the log of the moment-generating function. Taking the log is convenient because now we have
additivity: KX+Y (λ) = KX(λ) +KY (λ) for independent X,Y . Cumulants are obtained by writing KX(λ) as
a power series:

KX(λ) = 1 +

∞∑
n=1

κn(X)

n!
λn. (8)

When E[X] = 0, the first few values of κn are:

κ1(X) = 0, (9)

κ2(X) = E[X2], (10)

κ3(X) = E[X3], (11)

κ4(X) = E[X4]− 3E[X2]2, (12)

κ5(X) = E[X5]− 10E[X3]E[X2], (13)

κ6(X) = E[X6]− 16E[X4]E[X2]− 10E[X3]2 + 30E[X2]3. (14)

Since K is additive, each of the κn are as well. Thus while we ran into the issue that E[(X + Y )4] 6=
E[X4] + E[Y 4], it is the case that κ4(X + Y ) = κ4(X) + κ4(Y ) as long as X and Y are independent. By
going back and forth between moments and cumulants it is possible to obtain tail bounds even if only some
of the moments exist. However, this can be arduous and Rosenthal’s inequality is probably the better route
in such cases.
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