
[Lecture 25]

0.1 Efficient Clustering Under Bounded Covariance

We saw that resilience is information-theoretically sufficient for agnostic clustering, but we would also like to
develop efficient algorithms for clustering. This is based on work in ? and ?, although we will get a slightly
slicker argument by using the machinery on resilience that we’ve developed so far.

As before, we will need a strong assumption than resilience. Specifically, we will assume that each cluster
had bounded covariance and that the clusters are well-separated:

Theorem 0.1. Suppose that the data points x1, . . . , xn can be split into k clusters C1, . . . , Ck with sizes
αn, · · · , αkn and means µ1, . . . , µk, and moreover that the following covariance and separation conditions
hold:

• 1
|Cj |

∑
i∈Cj

(xi − µj)(xi − µj)> � σ2I for each cluster Cj,

• ∆ ≥ 36σ/
√
α, where ∆ = minj 6=j′ ‖µj − µj′‖2.

Then there is a polynomial-time algorithm outputting candidate clusters Ĉ1, . . . , Ĉk and means µ̂1, . . . , µ̂k
such that:

• |Cj4Ĉj | = O(σ2/α∆2) (cluster recovery), and

• ‖µj − µ̂j‖2 = O(σ2/α∆) (parameter recovery).

The basic idea behind the algorithm is to project each of the points xi onto the span of the top k singular
vectors of the data matrix X = [x1 · · · xn]. Let Pk be the projection operator onto this space. Then since
the points Pxi lie in only a k-dimensional space instead of a d-dimensional space, they are substantially
easier to cluster. The algorithm itself has three core steps and an optional step:

1. Project points xi to Pxi.

2. Form initial clusters based on the Pxi.

3. Compute the means of each of these clusters.

4. Optionally run any number of steps of k-means in the original space of xi, initialized with the computed
means from the previous step.

We will provide more formal psuedocode later [NOTE: TBD]. For now, we focus on the analysis, which has
two stages: (1) showing that the initial clustering from the first two steps is “nice enough”, and (2) showing
that this niceness is preserved by the k-means iterations in the second two steps.

Analyzing the projection. We start by analyzing the geometry of the points Pkxi. The following lemma
shows that the projected clusters are still well-separated and have small covariance:

Lemma 0.2. The projected points Pkxi satisfy the covariance and separation conditions with parameters σ
and

√
∆2 − 4σ2/α ≥ 35σ/

√
α:

1

|Cj |
∑
i∈Cj

(Pxi − Pµj)(Pxi − Pµj)> � σ2I and ‖Pµj − Pµj′‖2 ≥
√

∆2 − 4σ2/α. (1)

In other words, the covariance condition is preserved, and separation is only decreased slightly.

Proof. The covariance condition is preserved because the covariance matrix of the projected points for cluster
j is PkΣjPk, where Σj is the un-projected covariance matrix. This evidently has smaller singular values than
Σk.
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The separation condition requires more detailed analysis. We start by showing that there is not much in
the orthogonal component (I−Pk)xi. Indeed, we have that the top singular value of (I−Pk)xi is at most σ:

S =
1

n

n∑
i=1

((I − Pk)xi)((I − Pk)xi)
> � σ2I (2)

This is because Pk minimizes this top singular value among all k-dimensional projection matrices, and if we
take the projection Qk onto the space spanned by the means µ1, . . . , µk, we have

1

n

n∑
i=1

((I −Qk)xi)((I −Qk)xj)
> =

k∑
j=1

αj
|Cj |

∑
i∈Cj

((I −Qk)xi)((I −Qk)xi)
> (3)

=

k∑
j=1

αj
|Cj |

∑
i∈Cj

((I −Qk)(xi − µj))((I −Qk)(xi − µj))> (4)

�
k∑
j=1

αj
|Cj |

∑
i∈Cj

(xi − µj)(xi − µj)> �
k∑
j=1

αjσ
2I = σ2I. (5)

Given this, we know that the projections (I − Pk)µj must be small, since otherwise we have

v>Sv =
1

n

n∑
i=1

〈(I − Pk)xi, v〉2 (6)

≥ αj
|Cj |

∑
i∈Cj

〈(I − Pk)xi, v〉2 (7)

≥ αj
〈 1

|Cj |
∑
i∈Cj

(I − Pk)xi, v
〉2

(8)

= αj〈(I − Pk)µj , v〉2. (9)

Consequently 〈(I−Pk)µj , v〉2 ≤ σ2/αj and hence (taking v to align with (I−Pk)µj) we have ‖(I−Pk)µj‖2 ≤
σ/
√
αj . In particular ‖(I − Pk)(µj − µj′)‖2 ≤ 2σ/

√
α.

Now, by the Pythagorean theorem we have

‖Pk(µj − µj′)‖22 = ‖µj − µj′‖22 − ‖(I − Pk)(µj − µj′)‖22 ≥ ∆2 − 4σ2/α, (10)

and hence the projected means are separated by at least
√

∆2 − 4σ2/α, as was to be shown.

Analyzing the initial clustering. We now analyze the initial clustering. Call a point i a proto-center if
there are at least α

2 n projected points within distance 3σ
√
k of Pkxi, and call the set of these nearby points

the associated proto-cluster.
We will show that the proto-clusters are nearly pure (have few points not from Cj) using a similar

argument as when we analyzed resilient clustering. As before, call a proto-cluster j-like if there are at least
αjα

4 n points from Cj in the proto-cluster.

Lemma 0.3. Each proto-cluster is j-like for exactly one j.

Proof. We know that it is j-like for at least one j by the Pigeonhole principle (if not, then the proto-cluster
has at most α

4 n points in total, contradicting its size of at least α
2 n). So suppose for the sake of contradiction

that it is both j-like and j′-like. By resilience, the mean of the points from Cj is at most 2σ/
√
α away from

Pkµj , and similarly the mean of the points from Cj′ is at most 2σ/
√
α away from Pkµj′ . Since the cluster has

radius 3σ
√
k ≤ 3σ/

√
α, this implies that ‖Pk(µj − µj′)‖2 ≤ 10σ/

√
α, contradicting the separation condition

for the projected means. Thus no proto-cluster can be j-like for multiple j, which proves the lemma.
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Now since each proto-cluster is j-like for exactly one j, at least half of the points must come from that
proto-cluster.

At this point we are essentially done if all we care about is constructing an efficient algorithm for cluster
recovery (but not parameter recovery), since if we just extend each proto-cluster by O(σ) we are guaranteed
to contain almost all of the points in its corresponding cluster, while still containing very few points from any
other cluster (assuming the data are well-separated). However, parameter recovery is a bit trickier because we
need to make sure that the small number of points from other clusters don’t mess up the mean of the cluster.
The difficulty is that while we have control over the projected distances, and can recover the projected centers
Pkµj well, we need to somehow get back to the original centers µj .

The key here is that for each proto-cluster, the Pxi are all close to each other, and the missing component
(I − Pk)xi has bounded covariance. Together, these imply that the proto-cluster is resilient—deleting an
ε-fraction of points can change the mean by at most O(σε) in the Pk component, and O(σ

√
ε) in the (I −Pk)

component. In fact, we have:

Lemma 0.4. Let B be a proto-cluster with mean ν. Then

1

|B|
∑
i∈B

(xi − ν)(xi − ν)> � 11σ2/α. (11)

In particular, if B is j-like then we have ‖µj − ν‖2 ≤ 9σ/
√
α.

Proof. The covariance bound is because the covariance of the xi are bounded in norm by at most 3σ
√
k

in the Pk component and hence can contribute at most 9σ2k ≤ 9σ2/α to the covariance, while we get an
additional 2σ2/α in an orthogonal direction because the overall second moment of the (I − Pk)xi is σ2 and
the i ∈ B contribute to at least an α

2 fraction of that.
Now, this implies that B is resilient, while we already have that Cj is resilient. Since B ∩ Cj contains at

least half the points in both B and Cj , this gives that their means are close–within distance 2(
√

11+1)σ/
√
α <

9σ/
√
α.

Analyzing k-means. We next show that k-means iterations preserve certain important invariants. We
will call the assigned means µ̂j R-close if ‖µ̂j − µj‖2 ≤ R for all j, and we will call the assigned clusters Ĉj
ε-close if |Cj4Ĉj | ≤ ε|Cj | for all j. We will show that if the means are R-close then the clusters are ε-close
for some ε = f(R), and that the resulting new means are then g(R)-close. If R is small enough then we will
also have g(R) < R so that we obtain an invariant.

Let ∆jj′ = ‖µj − µj′‖2, so ∆jj′ ≥ ∆. We will show that if the µ̂j are R-close, then few points in Cj can

end up in Ĉj′ . Indeed, if xi ends up in Ĉj′ then we must have ‖xi − µ̂j′‖22 ≤ ‖xi − µ̂j‖22, which after some
re-arrangement yields

〈xi − µ̂j , µ̂j′ − µ̂j〉 ≥
1

4
〈µ̂j′ − µ̂j , µ̂j′ − µ̂j〉. (12)

Applying the covariance bound and Chebyshev’s inequality along the vector v = µ̂j′ − µ̂j , we see that the

fraction of points in Cj that end up in Ĉj′ is at most 4σ2

‖µ̂j−µ̂j′‖22
≤ 4σ2

(∆jj′−2R)2 ≤
4σ2

(∆−2R)2 . In total this means

that at most 4σ2n
(∆−2R)2 points from other clusters end up in Ĉj , while at most

4kσ2|Cj |
(∆−2R)2 points from Cj end up

in other clusters. Thus we have ε ≤ 4kσ2

(∆−2R)2 + 4σ2

α(∆−2R)2 ≤
8σ2

α(∆−2R)2 , so we can take

f(R) =
8σ2

α(∆− 2R)2
. (13)

Now suppose that γjj′ |Cj | points in Cj are assigned to Ĉj′ , where we must have γjj′ ≤ 4σ2

(∆jj′−2R)2 . By

resilience, the mean of these points is within σ/
√
γjj′ of µj and hence within ∆jj′ + σ/

√
γjj′ of µj′ . In total,

then, these points can shift the mean µ̂j′ by at most

γjj′αjn(∆jj′ + σ/
√
γjj′)

1
2αn

≤ 2αj
α

( 4σ2∆jj′

(∆jj′ − 2R)2
+

2σ2

∆jj′ − 2R

)
≤ 4αj

α

( 2σ2∆

(∆− 2R)2
+

σ2

∆− 2R

)
. (14)

3



At the same time, the 4kσ2

(∆−2R)2 fraction of points that are missing from Cj′ can change its mean by at most

4σ2
√
k

∆−2R . Thus in total we have

‖µ̂j′ − µj′‖2 ≤
4σ2

∆− 2R
·
(√

k +
1

α
+

2∆

α(∆− 2R)

)
≤ 8σ2(∆−R)

α(∆− 2R)2
. (15)

In particular we can take g(R) = 8σ2(∆−R)
α(∆−2R)2 .

As long as R ≤ ∆/4 we have g(R) ≤ 24σ2

α∆ and f(R) ≤ 32σ2

α∆2 , as claimed. Since our initial R is 9σ/
√
α,

this works as long as ∆ ≥ 36σ/
√
α, which completes the proof.
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