
[Lecture 24]

0.1 Clustering Under Resilience

The mixture of Gaussians case is unsatisfying because data are unlikely to actually be Gaussian mixtures in
practice, yet common algorithms like k-means still do a good job at clustering data. We therefore move to the
agnostic setting, and show that we only need the distributions to be resilient in order to cluster successfully.

We will start by proving an even stronger result—that if a set of points contains a (ρ, α)-resilient subset
S of size αn, then it is possible to output an estimate µ̂ that is close to the true mean µ of S, regardless
of the other (1 − α)n points. As stated, this is impossible, since there could be O(1/α) identical clusters
in the data. So what we will actually show is a list-decoding result—that it is possible to output O(1/α)
“candidates” µ̂l such that one of them is close to the mean of S:

Proposition 0.1. Suppose that a set of points S̃ = {x1, . . . , xn} contains a (ρ, α/4)-resilient set S with
mean µ. Then if |S| ≥ αn (even if α < 1

2), it is possible to output m ≤ 2
α candidates µ̂1, . . . , µ̂m such that

‖µ̂j − µ‖ ≤ 8ρ
α for some j.

Proof. The basic intuition is that we can cover the points in S̃ by resilient sets S′1, . . . , S
′
2/α of size α

2 n. Then

by the pigeonhole principle, the resilient set S must have large overlap with at least one of the S′, and hence
have similar mean. This is captured in Figure 1 below.

Figure 1: If we cover S̃ by resilient sets, at least one of the sets S′ has large intersection with S.

The main difference is that S and S′ may have relatively small overlap (in a roughly α-fraction of elements).
We thus need to care about resilience when the subset T is small compared to S. The following lemma relates
resilience on large sets to resilience on small sets:

Lemma 0.2. For any 0 < ε < 1, a distribution/set is (ρ, ε)-resilient if and only if it is ( 1−εε ρ, 1− ε)-resilient.

This was already proved in Appendix ?? as part of Lemma ??. Given Lemma 0.2, we can prove
Proposition 0.1 with a similar triangle inequality argument to how we showed that resilient sets have small
modulus of continuity. However, we now need to consider multiple resilient sets Si rather than a single S′.

Suppose S is (ρ, α4 )-resilient around µ–and thus also ( 4
αρ, 1−

α
4 )-resilient by Lemma 0.2–and let S1, . . . , Sm

be a maximal collection of subsets of [n] such that:

1. |Sj | ≥ α
2 n for all j.

2. Sj is ( 4
αρ, 1−

α
2 )-resilient (with mean µj).

3. Sj ∩ Sj′ = ∅ for all j 6= j′.

Clearly m ≤ 2
α . We claim that S has large intersection with at least one of the Sj and hence µj is close

to µ. By maximality of the collection {Sj}mj=1, it must be that S0 = S\(S1 ∪ · · · ∪ Sm) cannot be added to

the collection. First suppose that |S0| ≥ α
2 n. Then S0 is ( 4

αρ, 1−
α
2 )-resilient (because any subset of α

2 |S0|
points in S0 is a subset of at least α

4 |S| points in S). This contradicts the maximality of {Sj}mj=1, so we must
have |S0| < α

2 n.
Now, this implies that |S ∩ (S1 ∪ · · · ∪ Sm)| ≥ α

2 n, so by pigeonhole we must have |S ∩ Sj | ≥ α
2 |Sj | for

some j. Letting T = S ∩ Sj as before, we find that |T | ≥ α
2 |Sj | ≥

α
4 |S| and hence by resilience of Sj and S

we have ‖µ− µj‖ ≤ 2 · ( 4
αρ) = 8

αρ by the same triangle inequality argument as before.
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Better bounds for well-separated clusters. Proposition 0.1 is powerful because it holds under very
minimal conditions (we do not need to assume anything about separation of clusters or even about any of the
clusters other than the one we are estimating). However, its guarantees are also minimal—we only know that
we get approximate parameter recovery in the list-decoding model, and cannot say anything about cluster
recovery. We next obtain a stronger bound assuming that the data can actually be separated into clusters
(with a small fraction of outliers) and that the means are well-separated. This stronger result both gives
cluster recovery, and gives better bounds for parameter recovery:

Proposition 0.3. Suppose that a set of points {x1, . . . , xn} can be partitioned into k sets C1, . . . , Ck of size
α1n, . . . , αkn, together with a fraction εn of outliers (ε = 1 − (α1 + · · ·+ αk)), where 2ε ≤ α = minkk=1 αj.
Further suppose that

• Each cluster is (ρ1, ε)-resilient and (ρ2, 2ε/α)-resilient.

• The means are well-separated: ∆ > 4ρ
ε where ∆ = minj 6=j′ ‖µj − µj′‖2.

Then we can output clusters Ĉ1, . . . , Ĉk such that:

• |Cj4Ĉj | ≤ O(ε/α)|Cj | (cluster recovery)

• The mean µ̂j of Ĉj satisfies ‖µ̂j − µj‖2 ≤ 2ρ2 (parameter recovery).

Proof. We will construct a covering by resilient sets as before, but this time make use of the fact that we
know the data can be approximately partitioned into clusters. Specifically, let S1, . . . , Sk be a collection of k
sets such that:

• |Sl| ≥ αn

• The Sl are disjoint and contain all but εn points.

• Each Sl is (ρ1, ε)-resilient.

We know that such a collection exists because we can take the Cj themselves. Now call a set S “j-like” if it
contains at least αj(ε/α)|S| points from Cj . We claim that each Sl is j-like for exactly one j. Indeed, by
pigeonhole it must be j-like for at least one j since ε/α ≤ 1/2 < 1.

In the other direction, note that if S if j-like then S ∩ Cj contains at least (αj/α)ε of the points in S,
and at least (|S|/n)(ε/α) ≥ ε of the points in Cj . Thus by resilience of both sets, the means of both S and
Cj are within ρ1

ε of the mean of S ∩ Cj and hence within 2ρ1
ε of each other. In summary, ‖µj − µS‖2 ≤ 2ρ1

ε .

Now if S were j-like and also j′-like, then we would have ‖µj − µj′‖2 ≤ 4ρ1
ε , which contradicts the separation

assumption.
Since Sl is j-like for a unique j, it contains at most (ε/α)|Sl| points from any of the other Cj′ , together

with at most εn outliers. Moreover, since the other Sl′ are not j-like, Sl is missing at most αj(ε/α)n points
from Cj . Thus Sl ∩ Cj is missing at most 2ε/α|Sl| points from Sl and at most ε/α|Cj | points from Cj . By
resilience their means are thus within 2ρ2 of each other, as claimed.

2


	Clustering Under Resilience

