
[Lecture 23]

1 Agnostic Clustering

We next study the idea of partial specification for clustering. Our setting for clustering will be the following:

• There are k unknown distributions p1, . . . , pk.

• We observe points x1, . . . , xn, such that a fraction αj of the points xi are drawn from pj .

Generally the αj are not known but we have a lower bound on αmin = minkj=1 αj . In clustering we have two
goals:

• Parameter recovery: We wish to estimate some parameter of the pj (usually their means).

• Cluster recovery: We wish to determine for each point xi which cluster pj it was drawn from.

In the simplest setting, we assume that each of the pj has a known parametric form (for instance, each pj is
a Gaussian with unknown mean and variance). In the agnostic setting, we do not assume a parametric form
for the pj but instead only assume e.g. bounded moments. In the robust setting, we allow some fraction ε of
the points to be arbitrary outliers (so α1 + · · ·+ αk = 1− ε).

Partial specification thus corresponds to the agnostic setting. Clustering is a particularly interesting setting
for studying partial specification because some algorithms that work in the simple setting fail completely in
the agnostic setting. Below we will first study the simple setting and give an algorithm based on the method
of moments, then turn our attention to the agnostic setting. In the agnostic setting, resilience will appear
once again as an information-theoretically sufficient condition enabling clustering. Finally, we will turn our
attention to efficient algorithms. In many cases the agnostic algorithms will work even in the robust agnostic
setting.

1.1 Clustering Mixtures of Gaussians

Here we assume that each pj = N (µj ,Σj). Thus we can treat each xi as being drawn from p =∑k
j=1 αjN (µj ,Σj). This is a parametric model with parameters (αj , µj ,Σj), so (at least in the limit

of infinite data) a sufficient condition for exact parameter recovery is for the model to be identifiable, meaning

that if
∑k
j=1 αjN (µj ,Σj) =

∑k
j=1 α

′
jN (µ′j ,Σ

′
j), then αj = α′j , µj = µ′j , and Σj = Σ′j .
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As stated, the model is never identifiable because we can always permute the (αj , µj ,Σj) and obtain an
identical distribution. What we actually care about is identifiability up to permutation: if pα,µ,Σ = pα′,µ′,Σ′

then αj = α′σ(j), µj = µ′σ(j), and Σj = Σ′σ(j) for some permutation σ.
We have the following result:

Proposition 1.1. As long as the orders pairs (µj ,Σj) are all distinct, the parameters (αj , µj ,Σj) are
identifiable up to permutation.

Proof. This is equivalent to showing that the functions fµ,Σ(x) defining the pdf of a Gaussian are all linearly
independent (i.e., there is no non-trivial finite combination that yields the zero function). We will start by
showing this in one dimension. So, suppose for the sake of contradiction that

m∑
j=1

cj exp(−(x− µj)2/2σ2
j )/
√

2πσ2 = 0, (1)

where the cj are all non-zero. Then integrating (1) against the function exp(λx) and using the formula for
the moment generating function of a Gaussian, we obtain

m∑
j=1

cj exp(
1

2
σ2
jλ

2 + µjλ) = 0. (2)

1We also need to worry about the case where k 6= k′, but for simplicity we ignore this.
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Let σmax = maxmj=1 σj , then dividing the above equation by exp( 1
2σ

2
maxλ

2) and taking λ→∞, we see that
only those j such that σj = σmax affect the limit. If S is the set of such indices j, we obtain∑

j∈S
cj exp(µjλ) = 0, (3)

i.e. there is a linear relation between the functions gµj
(λ) = exp(µjλ). But this is impossible, because as long

as the µj are distinct, the largest µj will always dominate the limit of the linear relation as λ→∞, and so
we must have cj = 0 for that j, a contradiction.

It remains to extend to the n-dimensional case. Suppose there was a linear relation among the PDFs of
n-dimensional Gaussians with distinct parameters. Then if we project to a random 1-dimensional subspace,
the corresponding marginals (which are linear functions of the n-dimensional PDFs) are also each Gaussian,
and have distinct parameters with probability 1. This is again a contradiction since we already know that
distinct 1-dimensional Gaussians cannot satisfy any non-trivial linear relation.

Proposition 1.1 shows that we can recover the parameters exactly in the limit of infinite data, but it
doesn’t say anything about finite-sample rates. However, asymptotically, as long as the log-likelihood function
is locally quadratic around the true parameters, we can use tools from asymptotic statistics to show that we
approach the true parameters at a 1/

√
n rate.

Recovery from moments. Proposition 1.1 also leaves open the question of efficient computation. In
practice we would probably use k-means or EM, but another algorithm is based on the method of moments.
It has the virtue of being provably efficient, but is highly brittle to mis-specification.

The idea is that the first, second, and third moments give a system of equations that can be solved for
the parameters (α, µ,Σ): letting p =

∑
j αjN (µj ,Σj), we have

Ep[X] =

k∑
j=1

αjµj , (4)

Ep[X ⊗X] =

k∑
j=1

αj(µjµ
>
j + Σj), (5)

Ep[X ⊗X ⊗X] =

k∑
j=1

αj(µ
⊗3
j + 3 Sym(µj ⊗ Σj)), (6)

where Sym(X)i1i2i3 = 1
6 (Xi1i2i3 +Xi1i3i2 +Xi2i1i3 +Xi2i3i1 +Xi3i1i2 +Xi3i2i1).

In d dimensions, this yields d+
(
d+1

2

)
+
(
d+2

3

)
≈ d3/6 equations and k(1 + d+

(
d+1

2

)
) ≈ kd2/2 unknowns.

Thus as long as d > 3k we might hope that these equations have a unique (up to permutation) solution for
(α, µ,Σ). As an even more special case, if we assume that the covariance matrices are all diagonal, then
we only have approximately 2kd unknowns, and the equations have a solution whenever the µj are linearly
independent. We can moreover find this solution via an efficient algorithm called the tensor power method,
which is a generalization of the power method for matrices, and the rate of convergence is polynomial in k, d,
and the condition number of certain matrices (and decays as 1/

√
n).

However, this method is very brittle—it relies on exact algebraic moment relations of Gaussians, so even
small departures from the assumptions (like moving from Gaussian to sub-Gaussian) will likely break the
algorithm. This is one nice thing about the agnostic clustering setting—it explicitly reveals the brittleness of
algorithms like the one above, and (as we shall see) shows why other algorithms such as k-means are likely to
perform better in practice.

Cluster recovery. An important point is that even in this favorable setting, exact cluster recovery is
impossible. This is because even if the Gaussians are well-separated, there is some small probability that a
sample ends up being near the center of a different Gaussian.

To measure this quantitatively, assume for simplicity that Σj = σ2I for all j (all Gaussians are isotropic
with the same variance), and suppose also that the µj are known exactly and that we assign each point x to
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the cluster that minimizes ‖x− µj‖2.2 Then the error in cluster recovery is exactly the probability that a
sample from µj ends up closer to some other sample µj′ , which is

k∑
j=1

αjPx∼N (µj ,σ2I)[‖x− µj‖2 > ‖x− µj′‖2 for some j′ 6= j] ≤
k∑
j=1

αj
∑
j′ 6=j

Φ(‖µj − µj′‖/σ) (7)

≤ kΦ(∆/σ), (8)

where ∆ = minj′ 6=j ‖µj − µj′‖2 and Φ is the normal CDF. As long as ∆�
√

log(k/ε), the cluster error will
be at most ε. Note that the cluster error depends on a separation condition stipulating that the cluster
centers are all sufficiently far apart. Moreover, we need greater separation if there are more total clusters
(albeit at a slowly-growing rate in the Gaussian case).

1.2 Clustering Under Resilience

The mixture of Gaussians case is unsatisfying because data are unlikely to actually be Gaussian mixtures in
practice, yet common algorithms like k-means still do a good job at clustering data. We therefore move to the
agnostic setting, and show that we only need the distributions to be resilient in order to cluster successfully:

Proposition 1.2. Suppose that p =
∑k
j=1 αjpj, where each pj is (ρ, α)-resilient with α = minkj=1 αj. Then

given p, it is possible to output a list of m ≤ 1
α “candidate means” µ̂1, . . . , µ̂m such that the mean of each pj

is close to one of the candidates: minml=1 ‖Epj [x]− µ̂l‖2 ≤ 4
αρ for all j.

Proof. Take any decomposition p =
∑k
j=1 α

′
jp
′
j where the pj′ are (ρ, α)-resilient and αj′ ≥ α. Then we claim

that for each j, TV(pj , p
′
j′) ≤ 1− α for some j′.

2This is not quite optimal, in reality we would want to assign based on ‖x− µj‖22/σ2 + logαj , but we consider this simpler
assignment for simplicity.
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