
[Lecture 21]

0.1 Doubly-Robust Estimators

Recall that in the previous section we defined the inverse propensity weighted estimator

Ep̃[Y (1)− Y (0)] = Ep̃
[( I[T = 1]

p̃(T | X)
− I[T = 0]

p̃(T | X)

)
Y (T )

]
. (1)

To actually estimate the left-hand-side, we take the empirical average over n samples.
There are a couple of downsides of this estimator. One is that the variance of this estimator can be large.

Specifically, we can compute it as

1

n

(
Ep̃
[ 1

p̃(T = 1 | X)
Y (1)2 +

1

p̃(T = 0 | X)
Y (0)2

]
− Ep̃[Y (1)− Y (0)]2

)
. (2)

If the propensity weights are near zero then the variance explodes (similarly to the issue with χ2-divergence
that we saw earlier).

Another issue is that estimating the propensity weights themselves is non-trivial, and if we use the wrong
propensity weights, then the estimate could be arbitrarily wrong.

We will explore an idea that partially mitigates both issues; it reduces the variance when the propensity
weights are correct (although doesn’t avoid the exploding variance issue), and in some cases it produces a
correct estimate even if the propensity weights are wrong.

The basic idea is as follows: suppose that we have some prediction Ȳ (1, X), Ȳ (0, X) of what will happen
under T = 1, T = 0 conditioned on X. Since these predictions only require knowing X and not T , an
alternate estimate of the treatment effect can be obtained by adding and subtracting Ȳ :

Ep̃[Y (1)− Y (0)] = Ep̃[Ȳ (1, X)− Ȳ (0, X)] + Ep̃[(Y (1)− Ȳ (1, X))− (Y (0)− Ȳ (0, X))] (3)

= Ep̃[Ȳ (1, X)− Ȳ (0, X)] + Ep̃
[( I[T = 1]

p̃(T | X)
− I[T = 0]

p̃(T | X)

)
(Y (T )− Ȳ (T,X))

]
. (4)

In other words, we first use our prediction Ȳ to form a guess of the average treatment effect, then use inverse
propensity weighting to correct the guess so as to obtain an unbiased estimate. This can yield substantial
improvements when Y (T ) − Ȳ (T,X) is much smaller in magnitude than Y (T ). For instance, a patient’s
cholesterol after taking a cholesterol-reducing drug is still highly-correlated with their initial cholesterol, so in
that case we can take Ȳ (T,X) to be the pre-treatment cholesterol level. Even though this is independent of
T it can substantially reduce the variance of the estimate! (We will formally bound the variance below.)

Bias of the estimate. Call the prediction Ȳ unbiased if E[Y | X,T ] = Ȳ (T,X). The first key property
of (4) is that it is unbiased as long as either Ȳ is unbiased, or the propensity weights are correct. Indeed,
if the prediction is unbiased then the first term is the average treatment effect while the second term is
zero. Conversely, if the propensity weights are correct then the second term exactly estimates the difference
between the predicted and true treatment effect. Correspondingly, (4) is called a doubly-robust estimator.

We can actually say more about the bias. Suppose that instead of the true propensity weights, we have
an incorrect guess p̂(t | x). Then the bias of the estimate is the difference between Ep̃[Y (1)− Y (0)] and (4),
which is

Ep̃[Y (1)− Y (0)]− E[Ȳ (1, X)− Ȳ (0, X)]− Ep̃
[( I[T = 1]

p̂(T | X)
− I[T = 0]

p̂(T | X)

)
(Y (T )− Ȳ (T,X))

]
(5)

= Ep̃
[
(Y (1)− Ȳ (1, X))

(
1− I[T = 1]

p̂(t = 1 | X)

)
+ (Y (0)− Ȳ (0, X))

(
1− I[T = 0]

p̂(t = 0 | X)

)]
. (6)
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Focusing on the first term, and using the independence of T and Y conditioned on X, we have

Ep̃
[
(Y (1)− Ȳ (1, X))

(
1− I[T = 1]

p̂(t = 1 | X)

)]
(7)

= Ep̃
[
(E[Y (1) | X]− Ȳ (1, X))

(
1− p̃(t = 1 | X)

p̂(t = 1 | X)

)
| X
]

(8)

≤ Ep̃[(E[Y (1) | X]− Ȳ (1, X))2]1/2Ep̃
[(

1− p̃(t = 1 | X)

p̂(t = 1 | X)

)2]1/2
, (9)

meaning that the bias of the estimator is the product of the biases of Ȳ and p̂ (measured as the expected
squared errors in (9)).

Variance of the estimate. We can obtain a somewhat similar relation for the variance. Usually the
variance of Ȳ (1, X)− Ȳ (0, X) is small compared to the propensity-weighted term, so again focusing on the
T = 1 case we have

Var
[
(Y (1)− Ȳ (1, X))

I[T = 1]

p̂(t = 1 | X)

]
≤ E

[
EY [(Y (1)− Ȳ (1, X))2 | X]

p̃(t = 1 | X)

p̂(t = 1 | X)2

]
. (10)

The variance is substantially reduced when Y (1) is close to Ȳ (1, X). We cannot always hope for this, e.g. if
Y has a large amount of intrinsic variance even conditioned on X. But in many cases even trivial Ȳ can
predict most of the variance in Y—for instance, for any chronic disease the patient’s post-treatment status is
well-predicted by their pre-treatment status. And the value of a stock tomorrow is well-predicted by its value
today.

Semi-parametric estimation. It may seem difficult to estimate Ȳ (·, X) and p̃(t = 1 | X), since any
parametric model could be mis-specified and lead to biased estimates. One idea is to estimate these both
non-parametrically, and then apply the doubly-robust estimator above. This is an instance of semi-parametric
estimation, because while we estimate Ȳ and p̃(t | X) non-parametrically, the doubly-robust estimator itself
is parametric (i.e a simple sample estimate of the mean), and in some cases we obtain non-parametric rates.
This is explored in detail in ? for estimating conditional average treatment effects; we describe the basic idea
here. Since the squared error in an estimate is Bias2 + Variance/n, the bias will dominate the error in the
doubly-robust estimator as long as the variance doesn’t explode (of course, the variance can often explode if
the propensity weights are too close to 0 or 1, and the following idea won’t help in that case).

We saw above that the bias of the doubly-robust estimator is the product of the biases in Ȳ and p̂,
which are both given as expected squared errors between the true and estimated value. In non-parametric
estimation, we typically get convergence rates of O(n−α) for some α < 1/2 (note that α = 1/2 is what we
typically get for parametric estimation). The parameter α typically depends on the dimension of the problem
and the smoothness of the function class we wish to estimate. Since the doubly-robust bias is the product
of the biases, we end up with a bias of O(n−2α) as long as Ȳ and p̂ each converge at a n−α rate. As long
as α > 1/4, this yields a parametric rate (the variance term will then asymptotically dominate as it only
converges at 1/

√
n).
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