
[Lecture 20]

1 Domain Adaptation under Covariate Shift

We now shift focus again, to a type of perturbation called covariate shift. We work in a classification or
regression setting where we wish to predict y from x, and make the assumption that p̃(y | x) and p∗(y | x)
are the same (the labeling function doesn’t change between train and test):

Assumption 1.1 (Covariate Shift). For a train distribution p̃ and test distribution p∗, we assume that
p̃(y | x) = p∗(y | x) for all x.

Thus the only thing that changes between train and test is the distribution of the covariates x (hence
the name covariate shift). We furthermore assume that we observe labeled samples (x1, y1), . . . , (xn, yn) ∼ p̃,
together with unlabeled samples x̄1, . . . , x̄m ∼ p∗. In the language of our previous setting, we could say that
D(p̃, p∗) = ‖p̃(y | x)− p∗(y | x)‖∞, ε = 0, and G = {p | p(x) = p0(x)} for some distribution p0 (obtained via
the unlabeled samples from p∗).

Beyond covariate shift, we will need to make some additional assumption, since if p̃(x) and p∗(x) have
disjoint supports then the assumption that p̃(y | x) = p∗(y | x) is meaningless. We will explore two different
assumptions:

1. Either we assume the p̃(x) and p∗(x) are known and not too different from each other, or

2. We assume that the model family is realizable: p∗(y | x) = pθ(y | x) for some θ.

This will lead to two different techniques: importance weighting and uncertainty estimation. We will also see
how to construct a “doubly robust” estimator that works as long as at least one of the assumptions holds.

1.1 Importance weighting

First assume that p̃(x) and p∗(x) are known. (We can generally at least attempt to estimate them from
unlabeled data, although if our model family is misspecified then our estimates might be poor.)

In a traditional setting, to minimize the loss on p̃(x) we would minimize

E(x,y)∼p̃[`(θ;x, y)], (1)

where ` is the loss function for either classification or regression. We can approximate this via the samples
from p̃ as

1

n

n∑
i=1

`(θ;xi, yi). (2)

To handle covariate shift we would like to instead minimize the expectation over p∗, but unfortunately we
can’t do this because we don’t have any outputs y drawn from p∗. The key insight that lets us get around
this is the following identity:

E(x,y)∼p∗
[
`(θ;x, y)

]
= E(x,y)∼p̃

[p∗(x)

p̃(x)
`(θ;x, y)

]
. (3)

Taking this identity as given for the moment, we can then approximate the expectation over p∗ via samples
from p̃ as follows:

1

n

n∑
i=1

p∗(xi)

p̃(xi)
`(θ;xi, yi). (4)

This quantity is called the propensity-weighted training loss1, because each training sample is weighted by
how much more it looks like a sample from p∗ than from p̃.

1Also sometimes called the importance-weighted loss.
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To prove the identity, we make use of the covariate shift assumption:

E(x,y)∼p∗ [`(θ;x, y)] = E(x,y)∼p̃

[p∗(x, y)

p̃(x, y)
`(θ;x, y)

]
(5)

= E(x,y)∼p̃

[p∗(x)

p̃(x)

p∗(y | x)

p̃(y | x)
`(θ;x, y)

]
(6)

= E(x,y)∼p̃

[p∗(x)

p̃(x)
`(θ;x, y)

]
, (7)

where the final equality is by the covariate shift assumption.

Variance of the estimator. Even if p∗(x)
p̃(x) can be computed, the importance weighted estimator could

have high variance. This is because the weights p∗(xi)
p̃(xi)

could be large or potentially infinite.

For convenience assume that `(θ;x, y) ≤ B for all θ, x, y. We can compute (or rather, bound) the variance
as follows:

Varp̃[
p∗(x)

p̃(x)
`(θ;x, y)] = Ep̃[(p∗(x)/p̃(x))2`(θ;x, y)2]− Ep∗ [`(θ;x, y)]2 (8)

≤ Ep̃[(p∗(x)/p̃(x))2]B2 (9)

= (Dχ2(p̃‖p∗) + 1)B2, (10)

where Dχ2 is the χ2-divergence:

Dχ2(p̃‖p∗) def
=

∫
(p∗(x)− p̃(x))2

p̃(x)
dx =

∫
p∗(x)2

p̃(x)
dx− 1. (11)

The variance of the propensity-weighted loss is thus more or less controlled by the χ2-divergence between
source and target. To gain some intuition for how χ2 behaves, first note that is is always larger than KL
divergence (in the reverse direction, though I’m not sure the order of arguments is canonical):

Dkl(p
∗‖p̃) =

∫
p∗(x) log

p∗(x)

p̃(x)
dx (12)

≤
∫
p∗(x)

p∗(x)− p̃(x)

p̃(x)
dx (13)

=

∫
p∗(x)2

p̃(x)
dx− 1 = Dχ2(p̃‖p∗). (14)

Additionally, the χ2-divergence between two Gaussians is exponential in the difference between their means.
To see this, let Z denote the normalization constant of an isotropic Gaussian, and write

Dχ2(N (µ, I),N (µ′, I)) = −1 +
1

Z

∫
exp(

1

2
‖x− µ′‖22 − ‖x− µ‖22)dx (15)

= −1 +
1

Z

∫
exp(

1

2
(−‖x‖22 − (2µ′ − 4µ)>x+ ‖µ′‖22 − 2‖µ‖22)) (16)

= −1 +
1

Z

∫
exp(

1

2
(−‖x+ (µ′ − 2µ)‖22 + ‖µ′ − 2µ‖22 + ‖µ′‖22 − 2‖µ‖22)) (17)

= −1 + exp(‖µ′‖22 + ‖µ‖22 − 2µ>µ′) = −1 + exp(‖µ− µ′‖22). (18)

This is bad news for propensity weighting, since the weights blow up exponentially as the distributions move
apart.
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Connection to causal inference. Propensity weighting can also be used in the context of causal inference.
Here we have a patient with covariates X, with treatment condition T (usually T ∈ {0, 1}), and outcome Y .
Our goal is to estimate the treatment effect, which, roughly speaking, is E[Y | T = 1]− E[Y | T = 0] (this
is wrong as stated and will be remedied below). We will see below how to do this by letting p∗0 and p∗1 be
the distributions where T = 0 and T = 1, respectively. However, first we need to set up the problem more
carefully.

To set the problem up more carefully, we use the potential outcomes framework. In this framework there
are actually two variables, Y (0) and Y (1), which are what the outcome would have been if we had set T = 0
or T = 1, respectively. This is potentially different from the distribution of the outcome conditional on T ,
since there could be factors that correlate T with Y (for instance, if T is smoking and Y is lung cancer, there
could be some gene that causes one to both be more likely to smoke and more likely to get lung cancer
that accounts for the strong empirical correlation between T and Y ; this was an actual objection raised by
Fisher!).

Of course, there are plenty of factors that create correlation between T and Y in an observational setting,
for instance sicker patients are more likely to be treated aggressively. We are okay with this as long as these
factors are observed as part of the covariates X. This leads us to the unconfoundedness assumption:

Assumption 1.2 (Unconfoundedness). The distribution (X,T, Y (0), Y (1)) is said to be unconfounded if
Y (0), Y (1) ⊥⊥ T | X. In other words, treatment and outcome should be independent conditional on the
covariates X.

The main challenge in the potential outcomes framework is that we only observe (X,T, Y (T )). In other
words, we only observe the outcome for the treatment T that was actually applied, which makes it difficult to
estimate E[Y (1)] or E[Y (0)]. We will deal with this by treating estimating E[Y (1)] as a domain adaptation
problem, and using propensity weighting. First note that, by unconfoundedness, we have

Ep̃[Y (1)] = EX∼p̃[Ep̃[Y (1) | X]] (19)

= EX∼p̃[Ep̃[Y (1) | X,T = 1]] (20)

= Ep∗1 [Y (T )], (21)

where we define p∗1 such that p∗1(x, t, y) = p̃(x)I[t = 1]p̃(y | x, t = 1); this has the same distribution over x as
p̃, but the treatment t = 1 is always applied. Since p̃(y | x, t) = p∗(y | x, t) almost surely, the covariate shift
assumption holds. We can thus estimate the expectation under p∗1 via propensity weighting:

Ep∗1 [Y (T )] = Ep̃
[p∗1(X,T )

p̃(X,T )
Y (T )

]
(22)

= Ep̃
[p∗1(T | X)

p̃(T | X)
Y (T )

]
(23)

= Ep̃
[ I[T = 1]

p̃(T | X)
Y (T )

]
. (24)

A similar calculation holds for computing Ep̃[Y (0)], for the distribution p∗0(x, t, y) = p̃(x)I[t = 0]p̃(y | x, t = 0).
Together, we have that

Ep̃[Y (1)− Y (0)] = Ep̃
[( I[T = 1]

p̃(T | X)
− I[T = 0]

p̃(T | X)

)
Y (T )

]
. (25)

Since the right-hand-side is in terms of Y (T ), it only involves observable quantities, and can be estimated
from samples as long as p̃(T | X) is known. This estimator is called inverse propensity weighting because it
involves dividing by the propensity weights p̃(T | X).

In the next section, we will explore an improvement on inverse propensity weighting called a doubly-robust
estimator.
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