
[Lecture 19]

0.1 Randomized Smoothing

We next discuss a simpler, almost trivial approach to obtaining verified bounds, that nevertheless works very
well in practice (it currently has the best certified bounds for `2 perturbations, and is efficient enough to
scale to the ImageNet dataset).

The basic idea is as follows: suppose that we have some classifier fθ : Rd → [0, 1]k, which maps an input
x ∈ Rd to a k-dimensional vector of class probabilities (so actually the range is ∆k ⊂ [0, 1]k). We can define
a smoothed classifier f̄θ as

f̄θ(x) = Eδ∼π[fθ(x+ δ)]. (1)

In other words, f̄θ applies fθ to some randomly perturbed point x+ δ that is close to x. Observe that we can
approximate f̄θ well by sampling repeatedly from δ.

Let πx be the distribution of x+ δ. The key bound underlying randomized smoothing lets us control the
change in f̄θ in terms of a certain modulus of continuity:

Proposition 0.1. Suppose that fθ maps into [0, 1]k. Then for any x, x′, we have

‖f̄θ(x)− f̄θ(x′)‖∞ ≤ TV(πx, πx′). (2)

In particular, if d(x, x′) ≤ ε, then ‖f̄θ(x)− f̄θ(x′)‖∞ ≤ max{TV(πx, πx′) | d(x, x′) ≤ ε}.

This says that f̄ is stable under perturbations as long as the family of distributions πx has bounded
modulus of continuity of TV with respect to d (note this is the opposite direction of the modulus that we
considered before).

The way to apply Proposition 0.1 is to somehow obtain a model such that the probability assigned to
the correct class under f̄θ is at least τ larger than the probability of any incorrect class. Then as long as
TV(πx, πx′) < τ whenever d(x, x′) ≤ ε, we know that no perturbation can change the arg max prediction of
f̄θ. In the remainder of this section we will discuss how to choose π, and how to train f̄θ.

Choosing the smoothing distribution π. We will restrict ourselves to the special case d(x, x′) = ‖x−x′‖2,
i.e. `2 perturbations. In this case we will take π = N (0, σ2I) for some σ. Then the modulus becomes

max{TV(N (0, σ2I),N (δ, σ2I)) | ‖δ‖2 ≤ ε} = Φ(ε/2σ)− Φ(−ε/2σ), (3)

where Φ is the normal CDF. When ε/σ is small, the right-hand-side is Θ(ε/σ), so we are automatically
resistant to perturbations that are small in `2-norm compared to σ.

Observe that the per-coordinate noise we apply is comparable in magnitude to the overall norm of the
perturbation. Thus in d dimensions, we need to apply noise that is

√
d times larger than the adversarial

perturbation that we seek robustness against. This matches the observation on random vs. adversarial noise
for linear models from the previous section. Indeed, the above analysis is essentially tight for linear models
(up to constants, and assuming ε/σ is small).

Training the model. Recalling that fθ and f̄θ both output probability distributions over y, a natural
training objective would be to minimize

E(x,y)∼p[− log(f̄θ(x)y)] = E(x,y)∼p[− log(Eδ[fθ(x+ δ)y])], (4)

i.e. the negative log probability that f̄θ(x) assigns to the true label y. However, the derivative of this quantity
is inconvenient to work with:

∇θ[log(Eδ[fθ(x+ δ)y]] = Eδ[∇θ[fθ(x+ δ)y]]/f̄θ(x)y (5)

= Eδ[
fθ(x+ δ)y
f̄θ(x)y

∇θ log fθ(x+ δ)y]. (6)

1



In particular, the importance weight
fθ(x+δ)y
f̄θ(x)y

could have high variation and so require many samples to

obtain a good estimate. An alternative is to instead move the log inside the expectation and minimize

E(x,y)∼pEδ[− log(fθ(x+ δ)y)]. (7)

Then we can compute stochastic gradients of the objective by sampling (x, y), sampling δ, and taking the
gradient of − log fθ(x+ δ)y, which can generally be computed straightforwardly (e.g. via backpropagation in
the case of neural networks).

2


	Randomized Smoothing

