
[Lecture 14]

0.1 Efficient Algorithm for Robust Regression

We now turn to the question of efficient algorithms, focusing on linear regression (we will address finite-sample
issues later). Recall that information-theoretically, we found that two conditions are sufficient to imply
resilience:

• Hypercontractivity: For all v, Ex∼p[〈x, v〉4] ≤ κEx∼p[〈x, v〉2]2.

• Bounded noise: Ex∼p[xz2x>] � σ2Ex∼p[xx>].

As for mean estimation under bounded covariance, our strategy will be to check whether these two properties
hold for the empirical distribution, and if they don’t we will filter out points such that we guarantee removing
more bad points than good points.

Unfortunately, the hypercontractivity condition is difficult to verify because it involves fourth moments.
We will thus need to assume a stronger condition, called certifiable hypercontractivity :

Ex∼p[〈x, v〉4] �sos κEx∼p[〈x, v〉2]2, (1)

where the LHS and RHS are considered as polynomials in v.
We will also need to introduce one additional piece of sum-of-squares machinery, called pseudoexpectations:

Definition 0.1. A degree-2k pseudoexpectation is a linear map E from the space of degree-2k polynomials
to R satisfying the following two properties:

• E[1] = 1 (where 1 on the LHS is the constant polynomial).

• E[p2] ≥ 0 for all polynomials p of degree at most k.

We let E or E2k denote the set of degree-2k pseudoexpectations.

The space E can be optimized over efficiently, because it has a separation oracle expressible as a sum-of-
squares program. Indeed, checking that E ∈ E amounts to solving the problem min{E[p] | p �sos 0}, which is
a sum-of-squares program because E[p] is a linear function of p.

We are now ready to define our efficient algorithm for linear regression, Algorithm 1. It is closely analogous
to the filter for mean estimation (Algorithm ??).

Algorithm 1 FilterLinReg

1: Input: (x1, y1), . . . , (xn, yn) ∈ Rd × R.
2: Initialize weights c1, . . . , cn = 1.

3: Compute the empirical least squares regressor: θ̂c
def
= (

∑n
i=1 cixixi)

−1(
∑n
i=1 cixiyi).

4: Find, if possible, a pseudoexpectation E ∈ E4 such that E[ 1n
∑n
i=1 ci〈xi, v〉4] ≥ 3κE[( 1

n

∑n
i=1 ci〈xi, v〉2)2].

5: If E exists, let τi = E[〈xi, v〉4] and update ci ← ci · (1− τi/maxj τj), and return to line 3.

6: Otherwise, find, if possible, a vector v ∈ Rd such that
∑n
i=1 ci〈xi, v〉2(yi−〈θ̂c, xi〉)2 ≥ 24σ2

∑n
i=1 ci〈xi, v〉2.

7: If v exists, let τi = 〈xi, v〉2(yi − 〈θ̂c, xi〉)2 and update ci ← ci · (1− τi/maxj τj), and return to line 3.

8: Otherwise, output θ̂c.

The algorithm first optimizes over E ∈ E4 to try to refute hypercontractivity; if it does so successfully, it
filters according to E[〈xi, v〉4]. Otherwise, it tries to refute the bounded noise condition, using θ̂c as a proxy
for θ∗ to approximate z = y − 〈θ∗, x〉. Again, if it successfully refutes bounded noise it filters based on this.

If it fails to refute either condition, we can safely output θ̂c, which will be close to θ∗ by resilience.
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Analyzing Algorithm 1. We will show that Algorithm 1 enjoys the following loss bound:

Proposition 0.2. Suppose that a good set S of (1− ε)n of the xi satisfy:

1

n

∑
i∈S
〈xi, v〉4 �sos κ(

1

n

∑
i∈S
〈xi, v〉2)2 and

1

n

∑
i∈S

z2i xix
>
i � σ2 1

n

∑
i∈S

xix
>
i . (2)

Then assuming ε ≤ 1
100 and κε ≤ 1

50 , the output of Algorithm 1 has excess loss at most 250σ2ε.

Proof. We analyze Algorithm 1 similarly to Algorithm ??. Specifically, we will establish the invariant that
we always remove more bad points than good points. This requires showing that

∑
i∈S ciτi ≤

1
2

∑n
i=1 ciτi for

both choices of τi in the algorithm. Concretely, we need to show:∑
i∈S

ciE[〈xi, v〉4] ≤?
1

2

n∑
i=1

ciE[〈xi, v〉4] and
∑
i∈S

ci〈xi, v〉2(yi − 〈θ̂c, xi〉)2 ≤?
1

2

n∑
i=1

ci〈xi, v〉2(yi − θ̂c, xi〉)2. (3)

For both of these we will want the following intermediate lemma, which states that deletions of hypercontractive
distributions are hypercontractive:

Lemma 0.3. Suppose that the set S of good points is hypercontractive in the sense that 1
n

∑
i∈S〈xi, v〉4 �sos

κ( 1
n

∑
i∈S〈xi, v〉2)2. Then, for any ci such that 1

n

∑
i∈S(1− ci) ≤ ε, we have

1

n

∑
i∈S

ci〈xi, v〉4 �sos
κ

1− κε
(

1

n

∑
i∈S

ci〈xi, v〉2)2. (4)

Proof. We expand directly; let

A =
1

n

∑
i∈S
〈xi, v〉4, B =

1

n

∑
i∈S
〈xi, v〉2, (5)

C =
1

n

∑
i∈S

(1− ci)〈xi, v〉4, D =
1

n

∑
i∈S

(1− ci)〈xi, v〉2. (6)

Then our goal is to show that κ
1−κε (B −D)2 − (A−C) �sos 0. We are also given that (i) κB2 �sos A and we

observe that (ii) C �sos D
2/( 1

n

∑n
i=1(1− ci) �sos D

2/ε by Cauchy-Schwarz. We thus have

κ

1− κε
(B −D)2 − (A− C) =

κ

1− κε
B2 − 2κ

1− κε
BD +

κ

1− κε
D2 −A+ C (7)

(i)

�sos (
κ

1− κε
− κ)B2 − 2κ

1− κε
BD + (

κ

1− κε
D2 + C) (8)

(ii)

�sos (
κ

1− κε
− κ)B2 − 2κ

1− κε
BD + (

κ

1− κε
+

1

ε
)D2 (9)

=
κ2ε

1− κε
B2 − 2κ

1− κε
BD +

1/ε

1− κε
D2 (10)

=
ε

1− κε
(κB −D/ε)2 �sos 0, (11)

as was to be shown.

With Lemma 0.3 in hand, we proceed to analyze the filtering steps by establishing the inequalities in (3).
For the first, observe that

1

n

∑
i∈S

ciE[〈xi, v〉4]
(i)

≤ κ

1− κε
E[(

1

n

∑
i∈S

ci〈xi, v〉2)2] (12)

(ii)

≤ κ

1− κε
E[(

1

n

n∑
i=1

ci〈xi, v〉2)2] (13)

(iii)

≤ 1

3(1− κε)
1

n

n∑
i=1

ciE[〈xi, v〉4]. (14)
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Here (i) is by Lemma 0.3 (and the fact that E[p] ≤ E[q] if p �sos q), (ii) is by the fact that adding the ci〈xi, v〉2
terms for i 6∈ S is adding a sum of squares, and (iii) is by the assumption that E refutes hypercontractivity.
Thus as long as κε ≤ 1

3 we have the desired property for the first filtering step.
For the second, observe that

1

n

∑
i∈S

ci〈xi, v〉2(yi − 〈θ̂c, xi〉)2 ≤
2

n

∑
i∈S

ci(〈xi, v〉2(yi − 〈θ∗, xi〉)2︸ ︷︷ ︸
(a)

+ 〈xi, v〉2〈θ̂c − θ∗, xi〉2︸ ︷︷ ︸
(b)

). (15)

We will bound (a) and (b) in turn. To bound (a) note that

1

n

∑
i∈S

ci〈xi, v〉2(yi − 〈θ∗, xi〉)2 =
1

n

∑
i∈S

ci〈xi, v〉2z2i (16)

≤ 1

n

∑
i∈S
〈xi, v〉2z2i (17)

≤ σ2

n

∑
i∈S
〈xi, v〉2 (18)

≤ σ2

1− κε
1

n

∑
i∈S

ci〈xi, v〉2, (19)

where the last line invokes Lemma 0.3 and the middle inequality is by the bounded noise assumption for S.
To bound (b), let R = 1

(1−ε)n
∑
i∈S〈θ̂c − θ∗, xi〉2, which is the excess loss of θ̂c and what we eventually

hope to bound when the algorithm terminates. We use Cauchy-Schwarz and hypercontractivity:

1

n

∑
i∈S

ci〈xi, v〉2〈θ̂c − θ∗, xi〉2 ≤
( 1

n

∑
i∈S

ci〈xi, v〉4
)1/2( 1

n

∑
i∈S

ci〈θ̂c − θ∗, xi〉4
)1/2

(20)

≤ κ

1− κε

( 1

n

∑
i∈S

ci〈xi, v〉2
)( 1

n

∑
i∈S

ci〈θ̂c − θ∗, xi〉2
)

(21)

≤ κR

1− κε

( 1

n

∑
i∈S

ci〈xi, v〉2
)
. (22)

Combining these, we obtain

1

n

∑
i∈S

ci〈xi, v〉2(yi − 〈θ̂c, xi〉)2 ≤
2σ2 + 2κR

1− κε

( 1

n

∑
i∈S

ci〈xi, v〉2
)
. (23)

But we are assuming that overall

1

n

n∑
i=1

ci〈xi, v〉2(yi − 〈θ̂c, xi〉)2 = S ·
( 1

n

n∑
i=1

ci〈xi, v〉2
)
, (24)

with S ≥ 10σ2. Thus we are safe as long as 2σ2+2κR
1−κε ≤ S/2, and the main remaining issue is to bound R in

terms of S. To do so, note that the distribution weighted by ci satisfies the hypercontractive and bounded
noise conditions with parameters 3κ

1−ε and S
1−ε . It follows from Proposition ?? (the resilience bound for linear

regression) that R ≤ 10Sε/(1− ε) as long as ε(κ/(1− ε)− 1) ≤ 1
6 and ε ≤ 1

8 . We thus need to verify that

2σ2 + 20κSε/(1− ε)
1− κε

≤? S/2, (25)

which if εκ ≤ 0.02 and ε ≤ 0.01 reduces to 2σ2 + 0.4S/0.99 ≤ 0.49S, which holds if S ≥ 24σ2, which is the
cutoff in the algorithm.

Since the algorithm terminates with S ≤ 24σ2, we incidentally also have that R ≤ 250σ2ε, as claimed.
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