
[Lectures 12-13]

1 Resilience Beyond Mean Estimation

We have so far focused primarily on mean estimation, first considering information theoretic and then
algorithmic issues. We now turn back to information theoretic issues with a focus on generalizing our results
from mean estimation to other statistical problems.

Let us recall our general setup: for true (test) distribution p∗ and corrupted (train) distribution p̃,
we observe samples X1, . . . , Xn from p̃ (oblivious contamination, although we can also consider adaptive

contamination as in Section ??). We wish to estimate a parameter θ and do so via en estimator θ̂ =

θ̂(X1, . . . , Xn). Our goal is to construct an estimator such that L(p∗, θ̂) is small according to a given loss
function L. This was summarized in Figure ?? from Section ??.

As before, we will start by allowing our estimator θ̂ to directly access the population distribution p̃
rather than samples. Thus we wish to control the error L(p∗, θ̂(p̃)). Since this is hopeless without further
assumptions, we assume that D(p∗, p̃) ≤ ε for some distance D, and that p∗ lies in some family G.

For now we continue to take D = TV and focus on more general losses L, corresponding to tasks beyond
mean estimation. Two key examples will be:

• Second moment estimation in spectral norm, which corresponds to the loss L(p, S) = ‖Ep[XX>]−
S‖.

• Linear regression, which corresponds to the loss L(p, θ) = Ex,y∼p[(y− θ>x)2− (y− θ∗(p)>x)2]. Note
that here L measures the excess predictive loss so that L(p, θ∗(p)) = 0.

As in the mean estimation case, we will define the modulus of continuity and the family of resilience
distributions, and derive sufficient conditions for resilience.

Modulus of continuity. The modulus of continuity generalizes straightforwardly from the mean estimation
case. We define

m(G, 2ε, L) = sup
p,q∈G:TV(p,q)≤2ε

L(p, θ∗(q)). (1)

As before, the modulus m upper-bounds the minimax loss. Specifically, consider the projection estimator that
outputs θ̂(p̃) = θ∗(q) for any q ∈ G with TV(p̃, q) ≤ ε. Then the error of θ̂ is at most m because TV(q, p∗) ≤ 2ε
and p∗, q ∈ G.

Resilience. Generalizing resilience requires more care. Recall that for mean estimation the set of (ρ, ε)-
resilient distributions was

GTVmean(ρ, ε)
def
=
{
p | ‖Er[X]− Ep[X]‖ ≤ ρ for all r ≤ p

1− ε
}
. (2)

We saw in Section ?? that robust mean estimation is possible for the family Gmean of resilient distributions; the
two key ingredients were the existence of a midpoint distribution and the triangle inequality for L(p, θ∗(q)) =
‖µp − µq‖. We now extend the definition of resilience to arbitrary cost functions L(p, θ) that may not satisfy
the triangle inequality. The general definition below imposes two conditions: (1) the parameter θ∗(p) should
do well on all distributions r ≤ p

1−ε , and (2) any parameter that does well on some r ≤ p
1−ε also does well on

p. We measure performance on r with a bridge function B(r, θ), which is often the same as the loss L but
need not be.

Definition 1.1 (GTV(ρ1, ρ2, ε)). Given an arbitrary loss function L(p, θ), we define GTV(ρ1, ρ2, ε) = GTV↓ (ρ1, ε)∩
GTV↑ (ρ1, ρ2, ε), where:

GTV↓ (ρ1, ε) , {p | sup
r≤ p

1−ε

B(r, θ∗(p)) ≤ ρ1}, (3)

GTV↑ (ρ1, ρ2, ε) , {p | for all θ, r ≤ p

1− ε
, (B(r, θ) ≤ ρ1 ⇒ L(p, θ) ≤ ρ2)}, (4)

The function B(p, θ) is an arbitrary cost function that serves the purpose of bridging.
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p1 p2
TV(p1, p2) ≤ η

r = min(p1,p2)
1−TV(p1,p2)

r ≤ p1
1−η r ≤ p2

1−η

p1 ∈ GTV↓ B(r, θ∗(p1)) ≤ ρ1 L(p2, θ
∗(p1)) ≤ ρ2

p2 ∈ GTV↑

Figure 1: Midpoint distribution helps bridge the modulus for GTV.

If we take B(p, θ) = L(p, θ) = ‖Ep[X]− Eθ[X]‖, ρ2 = 2ρ1, then this exactly reduces to the resilient set
GTVmean(ρ1, ε) for mean estimation. To see the reduction, note that GTVmean is equivalent to GTV↓ in Equation

(3). Thus we only need to show that GTV↑ is a subset of GTV↓ . By our choice of B,L and ρ2, the implication

condition in GTV↑ follows from the triangle inequality..

We will show that GTV is not too big by bounding its modulus of continuity, and that it is not too small
by exhibiting reasonable sufficient conditions for resilience.

Not too big: bounding m. We show that the designed GTV(ρ1, ρ2, ε) has small modulus of continuity
(and thus population minimax limit) in the following theorem:

Theorem 1.2. For GTV(ρ1, ρ2, ε) in Definition 1.1, we have m(GTV(ρ1, ρ2, ε), ε) ≤ ρ2.

Proof. As illustrated in Figure 1, we still rely on the midpoint distribution r to bridge the modulus. Consider
any p1, p2 satisfying TV(p1, p2) ≤ ε. Then there is a midpoint r such that r ≤ p1

1−ε and r ≤ p2
1−ε . From

the fact that p1 ∈ GTV(ρ1, ρ2, ε) ⊂ GTV↓ (ρ1, ε), we have B(r, θ∗(p1)) ≤ ρ1. From this and the fact that

p2 ∈ GTV(ρ1, ρ2, ε) ⊂ GTV↑ (ρ1, ρ2, ε), we then have L(p2, θ
∗(p1)) ≤ ρ2. Since p1 and p2 are arbitrary, this

bounds the modulus of continuity by ρ2.

Not too small: concrete examples. We next show that GTV yields sensible conditions for second moment
estimation and linear regression. We start with second moment estimation:

Proposition 1.3. Let B(p, S) = L(p, S) = ‖Ep[XX>] − S‖, and let p be a distribution on Rd such that
p ∈ Gmom,k)(σ), i.e. p∗ has bounded kth moments. Then assuming k > 2, we have p ∈ GTV(ρ, 2ρ, ε) for
ρ = O(σ2ε1−2/k).

This is essentially the same statement as for mean estimation, except with σ2ε1−2/k instead of σε1−1/k.

Proof. First we show that p ∈ G↓(ρ, ε), for which we need to show that

‖Er[XX>]− Ep[XX>]‖ ≤ ρ for all r ≤ p

1− ε
. (5)

Letting Y = XX>, this asks that Y is resilient in operator norm, which in turn asks that 〈Y,Z〉 is resilient for
any ‖Z‖∗ ≤ 1, where ‖ · ‖∗ is dual to the operator norm. Recalling that the operator norm is the maximum
singular value, it turns out that ‖ · ‖∗ is the nuclear norm, or the sum of the singular values. Thus for
Z = UΛV > we have ‖Z‖∗ =

∑
i Λii. (Proving this duality requires some non-trivial but very useful matrix

inequalities that we provide at the end of this section.)
Conveniently, the extreme points of the nuclear norm ball are exactly rank-one matrices of the form

±vv> where ‖v‖2 = 1. Thus we exactly need that 〈v,X〉2 is resilience for all v. Fortunately we have that
E[|〈v,X〉2 − E[〈v,X〉2]|k/2] ≤ E[|〈v,X〉|k] ≤ σk, so p is (ρ1, ε)-resilient with ρ1 = σ2ε1−2/k, which gives that
p ∈ G↓.
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Next we need to show that p ∈ G↑. We want

‖Er[XX>]− S‖ ≤ ρ1 =⇒ ‖Ep[XX>]− S‖ ≤ ρ2 whenever r ≤ p

1− ε
, (6)

but this is the same as ρ2 − ρ1 ≤ ‖Er[XX>]− Ep[XX>]‖, and we already know that the right-hand-side is
bounded by ρ1, so we can take ρ2 = 2ρ1, which proves the claimed result.

We move on to linear regression. In the proof for second moment estimation, we saw that p ∈ G↑ was
essentially implied by p ∈ G↓. This was due to the symmetry of the second moment loss together with the
triangle inequality for ‖ · ‖, two properties that we don’t have in general. The proof for second moment
estimation will require somewhat more different proofs for G↑ and G↓. For simplicity we state the result only
for fourth moments:

Proposition 1.4. For a distribution p on Rd×R, let B(p, θ) = L(p, θ) = Ep[(y−〈θ, x〉)2− (y−〈θ∗(p), x〉)2].
Let Z = Y − 〈θ∗(p), X〉 and suppose that the following two conditions holds:

Ep[XZ2X>] � σ2E[XX>], (7)

Ep[〈X, v〉4] ≤ κEp[〈X, v〉2]2 for all v. (8)

Then p ∈ GTV(ρ, 5ρ, ε) for ρ = 2σ2ε as long as ε(κ− 1) ≤ 1
6 and ε ≤ 1

8 .

Let us interpret the two conditions. First, as long as X and Z are independent (covariates are independent
of noise), we have Ep[XZ2X>] = E[Z2]E[XX>], so in that case σ2 is exactly a bound on the noise Z. Even
when X and Z are not independent, the first condition holds when Z has bounded 4th moment.

The second condition is a hypercontractivity condition stating that the fourth moments of X should not
be too large compared to the second moments. It is a bit unusual from the perspective of mean estimation,
because it does not require X to be well-concentrated, but only well-concentrated relative to its variance. For
regression, this condition makes sense because κ bounds how close the covariates are to being rank-deficient
(the worst-case is roughly an ε-mass at some arbitrary distance t/

√
ε, which would have second moment t2

and fourth moment t4/ε, so we roughly want κ < 1/ε). We will show later that such a hypercontractivity
condition is needed, i.e. simply assuming sub-Gaussianity (without making it relative to the variance) allows
for distributions that are hard to robustly estimate due to the rank-deficiency issue.

Proof. First note that L(p, θ) = (θ− θ∗(p))>Sp(θ− θ∗(p)), where Sp = Ep[XX>], and analogously for L(r, θ).
At a high level our strategy will be to show that θ∗(r) ≈ θ∗(p) and Sr ≈ Sp, and then use this to establish
membership in G↓ and G↑.

We first use the hypercontractivity condition to show that Sr ≈ Sp. We have

Er[〈v,X〉2] ≥ Ep[〈v,X〉2]− 1

1− ε

√
εVarp[〈v,X〉2] (9)

= Ep[〈v,X〉2]− 1

1− ε

√
ε(Ep[〈v,X〉4]− Ep[〈v,X〉2]2) (10)

≥ Ep[〈v,X〉2]− 1

1− ε
√
ε(κ− 1)Ep[〈v,X〉2] (11)

= (1− 1

1− ε
√
ε(κ− 1))Ep[〈v,X〉2]. (12)

Thus Sr � (1− 1
1−ε

√
ε(κ− 1))Sp, and similarly Sr � (1+ 1

1−ε

√
ε(κ− 1))Sp. Assuming ε ≤ 1

8 and ε(κ−1) ≤ 1
6 ,

we have 1
1−ε

√
ε(κ− 1) ≤ 8

7

√
1/6 < 1

2 , and so 1
2Sp � Sr �

3
2Sp.

We now turn to G↑ and G↓. A useful relation is θ∗(p) = S−1p Ep[XY ], and θ∗(r) − θ∗(p) = S−1r Er[XZ].

To prove that p ∈ G↓ we need to show that (θ∗(r)− θ∗(p))>Sr(θ∗(r)− θ∗(p)) is small. We have

(θ∗(r)− θ∗(p))>Sr(θ∗(r)− θ∗(p)) ≤
3

2
(θ∗(r)− θ∗(p))>Sp(θ∗(r)− θ∗(p)) (13)

=
3

2
Er[XZ]>S−1p Er[XZ] =

3

2
‖Er[S−1/2p XZ]− Ep[S−1/2p XZ]‖22. (14)
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This final condition calls for S
−1/2
p XZ to be resilient, and bounded variance of this distribution can be seen to

exactly correspond to the condition E[XZ2X>] � σ2E[XX>]. Thus we have resilience with ρ = 3σ2ε
2(1−ε)2 ≤ 2σ2ε

(since ε < 1
8 ).

Now we turn to G↑. We want that (θ − θ∗(r))>Sr(θ − θ∗(r)) ≤ ρ implies (θ − θ∗(p))>Sp(θ − θ∗(p)) ≤ 5ρ.
By the triangle inequality we have√

(θ − θ∗(p))>Sp(θ − θ∗(p)) ≤
√

(θ − θ∗(r))>Sp(θ − θ∗(r)) +
√

(θ∗(r)− θ∗(p))>Sp(θ∗(r)− θ∗(p)) (15)

≤
√

2(θ − θ∗(r))>Sr(θ − θ∗(r)) +
√

(4/3)σ2ε (16)

≤
√

2ρ+
√

(4/3)σ2ε =
√
ρ(
√

2 +
√

2/3) ≤
√

5ρ, (17)

which completes the proof.

Lower bound. TBD

Proving that nuclear norm is dual to operator norm. Here we establish a series of matrix inequalities
that are useful more broadly, and use these to analyze the nuclear norm. The first allows us to reduce dot
products of arbitrary matrices to symmetric PSD matrices:

Proposition 1.5. For any (rectangular) matrices A, B of equal dimensions, we have

〈A,B〉2 ≤ 〈(A>A)1/2, (B>B)1/2〉〈(AA>)1/2, (BB>)1/2〉. (18)

In a sense, this is like a “matrix Cauchy-Schwarz”.

Proof. We first observe that

[
(AA>)1/2 A

A> (A>A)1/2

]
� 0. This is because, if A = UΛV > is the singular

value decomposition, we can write the above matrix as

[
UΛU> UΛV >

V ΛU> V ΛV >

]
, which is PSD because it can be

factorized as [U ;V ]Λ[U ;V ]>. More generally this is true if we multiply (AA>)1/2 by λ and (A>A)1/2 by 1
λ .

We therefore have 〈[
λ(AA>)1/2 A

A> 1
λ (A>A)1/2

]
,

[
λ(BB>)1/2 −B
−B> 1

λ (B>B)1/2

]〉
≥ 0, (19)

since both terms in the inner product are PSD. This gives λ2〈(AA>)1/2, (BB>)1/2〉+ 1
λ2 〈(A>A)1/2, (B>B)1/2〉 ≥

2〈A,B〉. Optimizing λ yields the claimed result.

Next we show:

Theorem 1.6. If A and B are matrices of the same dimensions with (sorted) lists of singular values
σ1, . . . , σn and τ1, . . . , τn, then

〈A,B〉 ≤
n∑
i=1

σiτi. (20)

This says that the dot product between two matrices is bounded by the dot product between their sorted
singular values.

Proof. By Proposition 1.5, it suffices to show this in the case that A and B are both PSD and σ, τ are the
eigenvalues. Actually we will only need A and B to be symmetric (which implies that, oddly, the inequality
can hold even if some of the σi and τi are negative).

By taking similarity transforms we can assume without loss of generality that A = diag(σ1, . . . , σn) with
σ1 ≥ σ2 ≥ · · · ≥ σn. We thus wish to prove that

∑n
i=1 σiBii ≤

∑n
i=1 σiτi, where τi are the eigenvalues of B.

We make use of the following lemma:

Lemma 1.7. For all 1 ≤ k ≤ n, we have
∑k
i=1Bii ≤

∑k
i=1 τi.
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Proof. Let Bk be the k × k top-left submatrix of B. Then
∑k
i=1Bii = tr(Bk) is the sum of the eigenvalues

of Bk. We will show that the jth largest eigenvalue of Bk is smaller than the jth largest eigenvalue of B
(this is a special case of the Cauchy interlacing theorem). We prove this using the min-max formulation of
eigenvalues: λi(M) = minW :dim(W )=i−1 maxv∈W⊥,‖v‖2≤1 v

>Mv. Let W ∗ be the W that attains the min for
λj(B), and let Pk denote projection onto the first k coordinates. We have

λj(Bk) = min
W :dim(W )=i−1

max
v∈W⊥:‖v‖2≤1

v>Bkv (21)

≤ max
v∈(W∗)⊥:‖v‖2≤1

(Pkv)>Bk(Pkv) (22)

≤ max
v∈(W∗)⊥:‖v‖2≤1

v>Bv = λj(B), (23)

which proves the lemma.

Now with the lemma in hand we observe that, if we let σn+1 = 0 for convenience, we have

n∑
i=1

σiBii =

n∑
i=1

(σi − σi+1)(B11 + · · ·+Bii) (24)

≤
n∑
i=1

(σi − σi+1)(τ1 + · · ·+ τi) (25)

=

n∑
i=1

σiτi, (26)

which yields the desired result. In the above algebra we have used Abel summation, which is the discrete
version of integration by parts.

Now that we have Theorem 1.6 in hand, we can easily analyze the operator and nuclear norms. Letting
~σ(A) denote the vector of non-decreasing singular values of A, we have

〈Y,Z〉 ≤ 〈~σ(Y ), ~σ(Z)〉 ≤ ‖~σ(Y )‖∞‖~σ(Z)‖1. (27)

This shows that the dual of the operator norm is at most the nuclear norm, since ‖~σ(Z)‖1 is the nuclear
norm of Z. But we can achieve equality when Y = UΛV > by taking Z = u1v

>
1 (then ‖Z‖∗ = 1 while

〈Y,Z〉 = Λ11 = ‖Y ‖). So operator and nuclear norm are indeed dual to each other.
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