
[Lecture 11]

0.1 Sum-of-Squares Certifiably from the Poincaré inequality

We now turn our attention to bounding the value of (??). Ignoring finite-sample issues, our goal is to identify

assumptions on p such that M2k(p)
def
= EX∼p[(X − µ)⊗2k] yields a small value for (??).

Before doing so, we will introduce some machinery for establishing bounds on (??). The main idea is that
of a sum-of-squares proof:

Definition 0.1. A polynomial inequality p(v) ≤ q(v) has a sum-of-squares proof if q(v)− p(v) �sos 0. We
will also denote this as q(v) �sos p(v) or p(v) �sos q(v).

The usefulness of this perspective is that the relation �sos satisfies many of the same properties as ≤:

• If p1 �sos p2 and p2 �sos p3, then p1 �sos p3.

• If p1 �sos q1 and p2 �sos q2, then p1 + p2 �sos q1 + q2.

• If p1 �sos 0 and p2 �sos 0, then p1p2 �sos 0.

• If p1 �sos p2, q1 �sos q2, and p2, q1 �sos 0, then p1q1 �sos p2q2.

• Moreover, many “standard” inequalities such as Cauchy-Schwarz and Hölder have sum-of-squares proofs.

Using these, we can often turn a normal proof that p ≤ q into a sum-of-squares proof that p � q as long as
we give sum-of-squares proofs for a small number of key steps.

For concreteness, we will prove the last two claims properties above. We first prove that p1, p2 �sos 0 =⇒
p1p2 �sos 0. Indeed we have

p1(v)p2(v) = (
∑
i

p1i(v)2)(
∑
j

p2j(v)2) =
∑
ij

(p1i(v)p2j(v))2 �sos 0 (1)

Next we prove that p1 �sos p2, q1 �sos q2, and p2, q1 �sos 0 implies p1q2 �sos p2q2. This is because

p2q2 − p1q1 = p2(q2 − q1) + (p2 − p1)q1 �sos 0, (2)

where the second relation uses p2, q2 − q1 �sos 0 and p2 − p1, q1 �sos 0 together with the previous result.
In view of this, we can reframe bounding (??) as the following goal:

Goal: Find a sum-of-squares proof that 〈M2k(p), v⊗2k〉 �sos λ‖v‖2k2 .

Certifiability for Gaussians. We now return to the assumptions needed on p that will enable us to
provide the desired sum-of-squares proof. Let us start by observing that a sum-of-squares proof exists for any
Gaussian distribution: If p = N (µ,Σ), then

〈M2k(N (µ,Σ)), v⊗2k〉 = 〈M2k(N (0, I)), (Σ1/2v)⊗2k〉 (3)

=
( k∏
i=1

(2i− 1)
)
〈I, (Σ1/2v)⊗2k〉 (4)

=
( k∏
i=1

(2i− 1)
)
‖Σ1/2v‖2k2 (5)

≤ (2k)k‖Σ‖k‖v‖2k2 , (6)

so we may take λ = (2k‖Σ‖)k. (Here I denotes the identity tensor that is 1 along the diagonal and zero
elsewhere.) Therefore normal distributions have certifiably bounded moments, but the proof above heavily
exploited the rotational symmetry of a normal distribution. We can provide similar proofs for other highly
symmetric distributions (such as the uniform distribution on the hypercube), but these are unsatisfying as
they only apply under very specific distributional assumptions. We would like more general properties that
yield certifiably bounded moments.
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Poincaré inequality. The property we will use is the Poincaré inequality. A distribution p on Rd is said
to satisfy the Poincaré inequality with parameter σ if

Varx∼p[f(x)] ≤ σ2Ex∼p[‖∇f(x)‖22] (7)

for all differentiable functions f : Rd → R. This is a “global to local property”–it says that for any function
that for any function f that varies under p, that variation can be picked up in terms of local variation (the
gradient). In particular, it says that p doesn’t have any “holes” (regines with low probability density that lie
between two regions of high probability density). Indeed, suppose that A and B were two disjoint convex
regions with p(A) = p(B) = 1

2 . Then p cannot satisfy the Poincaré inequality with any constant, since there
is a function that is 1 on A, 0 on B, and constant on both A and B.

Below are some additional examples and properties of Poincaré distributions:

• A one-dimensional Gaussian N (µ, σ2) is Poincaré with constant σ.

• If p, q are σ-Poincaré then their product p× q is σ-Poincaré. In particular a multivariate Gausssian
N (µ, σ2I) is σ-Poincaré.

• If X ∼ p is σ-Poincaré and A is a linear map, then AX is (σ‖A‖)-Poincaré. In particular, aX1 + aX2

is (
√
a2 + b2σ)-Poincaré when X1 and X2 are both σ-Poincaré, and N (µ,Σ) is ‖Σ‖1/2-Poincaré.

• More generally, if X ∼ p is σ-Poincaré and f is L-Lipschitz, then f(X) is (σL)-Poincaré.

Together these imply that Poincaré distributions contain multivariate Gaussians, arbitrary Lipschitz functions
of Gaussians, and independent sums of such distributions. The above properties (except the initial Gaussian
property) are all straightforward computations. Let us next state two substantially deeper results:

• If p is σ-strongly log-concave (meaning that the log-probability density log p(x) satisfies ∇2 log p(x) �
− 1
σ2 I), then p is σ-Poincaré (?).

• Suppose that the support of X ∼ p has `2-radius at most R, and let Z = N (0, τ2I) for τ ≥ 2R. Then
X + Z is (τ

√
e)-Poincaré (?).

Thus Poincaré encompasses all strongly log-concave densities, and effectively any product of bounded random
variables (after adding Gaussian noise, which we can always do ourselves).

It is instructive to compare Poincaré to the sub-Gaussian property that we have so far relied on. Poincaré
is neither strictly stronger or weaker than sub-Gaussian, but it is stronger than sub-exponential (we will see
this below). In general, we should think of Poincaré as being substantially stronger than sub-exponential: it
implies that not only is the distribution itself sub-exponential, but so is any Lipschitz function of the density.

As an example, consider the random variable (X,Y ) ∈ Rd where X ∼ N (0, I) and Y = εX for a
Rademacher random variable ε. Then (X,Y ) is sub-Gaussian, but not Poincaré with good constant: if we
take f(X,Y ) =

∑
iXiYi, then f is with high probability close to either +d or −d, so Var[f(X,Y )] ≈ d2.

However, ∇f(X,Y ) = (Y1, . . . , Yd, X1, . . . , Xd) and so ‖∇f(X,Y )‖22 is close to 2d with high probability. Thus
while the sub-Gaussian constant is O(1), the Poincaré constant in this case is Ω(

√
d).

Consequences of Poincaré. So far we have seen conditions that imply Poincaré, but we would also like
to derive consequences of this property. Below are some of the most useful ones:

• If X ∼ p is σ-Poincaré, then Lipschitz functions concentrate: P[|f(x)− E[f(x)]| ≥ t] ≤ 6 exp(−t/(σL))
for any L-Lipschitz f .

• As a corollary, we have volume expansion: For any set A, let Aε be the set of points within `2-distance
ε of A. Then p(A)p(Acε) ≤ 36 exp(−ε/σ).

This second property implies, for instance, that if p(A) ≥ δ, then almost all points will be within distance
O(σ log(1/δ)) of A.

To prove the second property, let f(x) = min(infy∈A ‖x− y‖2.ε). Then f is Lipschitz, is 0 on A, and is ε
on Acε. Let µ be the mean of f(X). Since f is sub-exponential we have p(A) = p(f(X) = 0) ≤ 6 exp(−µ/σ),
and p(Acε) = p(f(X) = ε) ≤ 6 exp(−(ε− µ))/σ). Multiplying these together yields the claimed result.

The most important property for our purposes, however, will be the following:
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Theorem 0.2. Suppose that p is σ-Poincaré and let f be a differentiable function such that E[∇jf(X)] = 0
for j = 1, . . . , k − 1. Then there is a universal constant Ck such that Var[f(X)] ≤ Ckσ2kE[‖∇kf(X)‖2F ].

Note that k = 1 is the original Poincaré property, so we can think of Theorem 0.2 as a generalization of

Poincaré to higher derivatives. Note also that ∇kf(X) is a tensor in Rdk ; the notation ‖∇kf(X)‖2F denotes
the squared Frobenius norm of ∇kf(X), i.e. the sum of the squares of its entries.

Theorem 0.2, while it may appear to be a simple generalization of the Poincaré property, is a deep result
that was established in ?, building on work of ?. We will use Theorem 0.2 in the sequel to construct our
sum-of-squares proofs.

Sum-of-squares proofs for Poincaré distributions. Here we will construct sum-of-squares proofs that

M2k(v)
def
= Ep[〈x− µ, v〉2k] �sos C

′
kσ

2k‖v‖2k2 whenever p is σ-Poincaré, for some universal constants C ′k. We
will exhibit the proof for k = 1, 2, 3 (the proof extends to larger k and the key ideas appear already by k = 3).
We introduce the notation

Mk = E[(x− µ)⊗k], (8)

Mk(v) = 〈Mk, v
⊗k〉 = E[〈x− µ, v〉k]. (9)

Proof for k = 1. We wish to show that Ep[〈x− µ, v〉2] �sos σ
2‖v‖22. To do this take fv(x) = 〈x, v〉. Then

the Poincaré inequality applied to fv yields

Ep[〈x− µ, v〉2] = Var[fv(x)] ≤ σ2E[‖∇fv(x)‖22] = σ2E[‖v‖22] = σ2‖v‖22. (10)

Thus M2(v) ≤ σ2‖v‖22 (this is just saying that Poincaré distributions have bounded covariance). This
property has a sum-of-squares proof because it is equivalent to σ2I −M2 � 0, and we know that all positive
semidefiniteness relations are sum-of-squares certifiable.

Proof for k = 2. Extending to k = 2, it makes sense to try fv(x) = 〈x − µ, v〉2. Then we have
∇fv(x) = 2〈x−µ, v〉v and hence E[∇fv(x)] = 0. We also have ∇2fv(x) = 2v⊗ v. Thus applying Theorem 0.2
we obtain

Var[fv(x)] ≤ C2σ
4E[‖2v ⊗ v‖2F ] = 4C2σ

4‖v‖42. (11)

We also have Var[fv(x)] = E[〈x− µ, v〉4]− E[〈x− µ, v〉2]2 = M4(v)−M2(v)2. Thus

M4(v) = (M4(v)−M2(v)2) +M2(v)2 (12)

≤ 4C2σ
4‖v‖42 + σ4‖v‖42 = (4C2 + 1)σ4‖v‖42. (13)

This shows that the fourth moment is bounded, but how can we construct a sum-of-squares proof? We
already have that M2(v)2 �sos σ

4‖v‖42 (by 0 �sos M2(v) �sos σ
2‖v‖22 and the product property). Therefore

we focus on bounding M4(v)−M2(v)2 = Var[fv(x)].
For this we will apply Theorem 0.2 to a modified version of fv(x). For a matrix A, let fA(x) =

(x− µ)>A(x− µ) = 〈A, (x− µ)⊗2〉. Then fv(x) = fA(x) for A = vv>. By the same calculations as above we
have E[∇fA(x)] = 0 and ∇2fA(x) = 2A. Thus by Theorem 0.2 we have

Var[fA(x)] ≤ C2σ
4E[‖2A‖2F ] = 4C2σ

4‖A‖2F . (14)

On the other hand, we have Var[fA(x)] = 〈M4, A ⊗ A〉 − 〈M2, A〉2 = 〈M4 −M2 ⊗M2, A ⊗ A〉. Thus (14)
implies that

〈M4 −M2 ⊗M2, A⊗A〉 ≤ 4C2σ
4‖A‖2F . (15)

Another way of putting this is that M4 −M2 ⊗M2, when considered as a matrix in Rd2×d2 , is smaller than
4C2σ

4I in the semidefinite ordering. Hence 4C2σ
4I − (M4 −M2 ⊗M2) � 0 and so 4C2σ

4‖v‖42 − 〈M4 −M2 ⊗
M2, v

⊗4〉 �sos 0, giving us our desired sum-of-squares proof. To recap, we have:

M4(v) = (M4(v)−M2(v)2) +M2(v)2 (16)

�sos 4C2σ
4‖v‖42 + σ4‖v‖42 = (4C2 + 1)σ4‖v‖42, (17)
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so we can take C ′2 = 4C2 + 1.
Proof for k = 3. Inspired by the k = 1, 2 cases, we try fv(x) = 〈x− µ, v〉3. However, this choice runs into

problems, because ∇fv(x) = 3〈x− µ, v〉2v and so E[∇fv(x)] = 3M2(v)v 6= 0. We instead should take

fv(x) = 〈x− µ, v〉3 − 3M2(v)〈x− µ, v〉, which yields (18)

E[∇fv(x)] = E[3〈x− µ, v〉2v − 3M2(v)v] = 0, (19)

E[∇2fv(x)] = E[6〈x− µ, v〉(v ⊗ v)] = 0, (20)

∇3fv(x) = 6(v ⊗ v ⊗ v). (21)

Applying Theorem 0.2 to fv(x) yields

Var[fv(x)] ≤ C3σ
6‖6(v ⊗ v ⊗ v)‖2F = 36C3σ

6‖v‖62. (22)

We can additionally compute

Var[fv(x)] = E[(〈x− µ, v〉3 − 3M2(v)〈x− µ, v〉)2]− E[〈x− µ, v〉3 − 3M2(v)〈x− µ, v〉]2 (23)

= M6(v)− 6M2(v)M4(v) + 9M2(v)3 −M3(v)2. (24)

Since our goal is to bound M6(v), we re-arrange to obtain

M6(v) = Var[fv(x)] + 6M2(v)M4(v) +M3(v)2 − 9M2(v)2 (25)

≤ 36C3σ
6‖v‖62 + 6(σ2‖v‖22)(C ′2σ

4‖v‖42) +M3(v)2 + 0 (26)

We can also use Hölder’s inequality to obtain M3(v)2 ≤ M2(v)M4(v), which yields an overall bound of
M6(v) ≤ (36C3 + 12C ′2)σ6‖v‖62.

We now turn this into a sum-of-squares proof. We need to show the following four relations:

(i) Var[fv(x)] �sos 36C3σ
6‖v‖62, (ii) M2(v)M4(v) �sos (σ2‖v‖22)(C ′2σ

4‖v‖42), (27)

(iii) M3(v) �sos M2(v)M4(v), (iv) − 9M2(v)2 �sos 0. (28)

The relation (ii) again follows by the product property of �sos, while −9M2(v)2 �sos 0 is direct because
M2(v)2 is already a square. We will show in an exercise that the Hölder inequality in (iii) has a sum-of-squares
proof, and focus on (i).

The relation (i) holds for reasons analogous to the k = 2 case. For a symmetric tensor A ∈ Rd3 , let
fA(x) = 〈A, (x− µ)⊗3 − 3M2 ⊗ (x− µ)〉. Then just as before we have E[∇fA(x)] = 0, E[∇2fA(x)] = 0, and
so Var[fA(x)] ≤ 36C3σ

6‖A‖2F , which implies that1

M6 − 6M2 ⊗M4 + 9M2 ⊗M2 ⊗M2 −M3 ⊗M3 � 36C3σ
6I, (29)

and hence Var[fv(x)] �sos 36C3σ
6‖v‖62 (again because semidefinite relations have sum-of-squares proofs).

In summary, we have M6(v) �sos (36C3 + 12C ′2)σ6‖v‖62, as desired.
Generalizing to higher k. For higher k the proof is essentially the same. What is needed is a function fv(x)

whose first k−1 derivates all have zero mean. This always exists and is unique up to scaling by constants. For
instance, when k = 4 we can take fv(x) = 〈x−µ, v〉4−6M2(v)〈x−µ, v〉2−4M3(v)〈x−µ, v〉−M4(v)+6M2(v)2.
This appears somewhat clunky but is a special case of a combinatorial sum. For the general case, let Tk be
the set of all integer tuples (i0, i1, . . .) such that i0 ≥ 0, is ≥ 2 for s > 0, and i0 + i1 + · · · = k. Then the
general form is

fv,k(x) =
∑

(i0,...,ir)∈Tk

(−1)r
(

k

i0 · · · ir

)
〈x− µ, v〉i0Mi1(v)Mi2(v) · · ·Mir (v). (30)

The motivation for this formula is that it is the solution to ∇fv,k(x) = kfv,k−1(x)v. Using fv,k, one can
construct sum-of-squares proofs by applying Theorem 0.2 to the analogous fA,k function as before, and then
use induction, the product rule, and Hölder’s inequality as in the k = 3 case.

1Actually this is not quite true because we only bound Var[fA(x)] for symmetric tensors A. What is true is that this holds if
we symmetrize the left-hand-side of (29), which involves averaging over all ways of splitting M2 and M4 over the 3 copies of Rd

in Rd×d×d.
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