
[Lecture 10]

0.1 Semidefinite Programming and Sum-of-Squares

In the previous subsection, we saw how to approximately solve max‖v‖∞≤1 v
>Σv via the semidefinite program

defined by maxM�0,diag(M)=1〈M,Σ〉. In this section we will cover semidefinite programming in more detail,

and build up to sum-of-squares programming, which will be used to achieve error O(ε1−1/k) when p∗ has
“certifiably bounded” kth moments (recall that we earlier achieved error O(ε1−1/k) for bounded kth moments
but did not have an efficient algorithm).

A semidefinite program is an optimization problem of the form

maximize 〈A,X〉 (1)

subject to X � 0,

〈X,B1〉 ≤ c1,
...

〈X,Bm〉 ≤ cm.

Here 〈X,Y 〉 = tr(XTY ) =
∑

ij XijYij is the inner product between matrices, which is the same as the

elementwise dot product when considered as n2-dimensional vectors.
Here the matrix A specifies the objective of the program, while (Bj , cj) specify linear inequality constraints.

We additionally have the positive semidefinite cone constraint that X � 0, meaning that X must be symmetric
with only non-negative eigenvalues. Each of A and B1, . . . , Bm are n× n matrices while the cj are scalars.
We can equally well minimize as maximize by replacing A with −A.

While (1) is the canonical form for a semidefinite program, problems that are seemingly more complex can
be reduced to this form. For one, we can add linear equality constraints as two-sided inequality constraints.
In addition, we can replace X � 0 with L(X) � 0 for any linear function L, by using linear equality
constraints to enforce the linear relations implied by L. Finally, we can actually include any number of

constraints L1(X) � 0, Lk(X) � 0, since this is e.g. equivalent to the single constraint

[
L1(X) 0

0 L2(X)

]
when k = 2. As an example of these observations, the following (arbitrarily-chosen) optimization problem is
also a semidefinite program:

minimize
x,M,Y

a>x+ 〈A1,M〉+ 〈A2, Y 〉 (2)

subject to M + Y � Σ

diag(M) = 1

tr(Y ) ≤ 1

Y � 0[
1 x>

x M

]
� 0

(As a brief aside, the constraint [1 x>;x M ] � 0 is equivalent to xx> �M which is in turn equivalent to
x>M−1x ≤ 1 and M � 0.)

Semidefinite constraints as quadratic polynomials. An alternative way of viewing the constraint
M � 0 is that the polynomial pM (v) = v>Mv is non-negative for all v ∈ Rd. More generally, if we have a
non-hogoneous polynomial pM,y,c(v) = v>Mv+ y>v+ c, we have pM,y,c(v) ≥ 0 for all v if and only if M ′ � 0

for M ′ =

[
c y>/2
y/2 M

]
� 0.

1



This polynomial perspective is helpful for solving eigenvalue-type problems. For instance, ‖M‖ ≤ λ if and
only if v>Mv ≤ λ‖v‖22 for all v, which is eqvuialent to asking that v>(λI −M)v ≥ 0 for all v. Thus ‖M‖
can be expressed as the solution to

minimize λ (3)

subject to λI −M � 0 (equivalently, v>(λI −M)v ≥ 0 for all v)

We thus begin to see a relationship between moments and polynomial non-negativity constraints.

Higher-degree polynomials. It is tempting to generalize the polynomial approach to higher moments.
For instance, M4(p) denote the 4th moment tensor of p, i.e. the unique symmetric tensor such that

〈M4, v
⊗4〉 = Ex∼p[〈x− µ, v〉4]. (4)

Note we can equivalently express 〈M4, v
⊗4〉 =

∑
ijkl(M4)ijklvivjvkvl, and hence (M4)ijkl = E[(xi − µ)(xj −

µ)(xk − µ)(xl − µ)].

A distribution p has bounded 4th moment if and only if 〈M, v⊗4〉 ≤ λ‖v‖42 for all v. Letting pM (v)
def
=

〈M,v⊗4〉, we thus can express the 4th moment of p as the polynomial program

minimize λ (5)

subject to λ(v21 + · · ·+ v2d)2 − pM (v) ≥ 0 for all v ∈ Rd

Unfortunately, in constrast to (2), (5) is NP-hard to solve in general. We will next see a way to approximate
(5) via a technique called sum-of-squares programming, which is a way of approximately reducing polynomial
programs such as (5) to a large but polynomial-size semidefinite program.

Warm-up: certifying non-negativity over R. Consider the one-dimensional polynomial

q(x) = 2x4 + 2x3 − x2 + 5 (6)

Is it the case that q(x) ≥ 0 for all x? If so, how would we check this?
What if I told you that we had

q(x) =
1

2
(2x2 + x− 3)2 +

1

2
(3x+ 1)2 (7)

Then, it is immediate that q(x) ≥ 0 for all x, since it is a (weighted) sum of squares.
How can we construct such decompositions of q? First observe that we can re-write q as the matrix

function

q(x) =

 1
x
x2

>  5 0 0
0 −1 1
0 1 2


︸ ︷︷ ︸

M

 1
x
x2

 . (8)

On the other hand, the sum-of-squares decomposition for q implies that we can also write

q(x) =

 1
x
x2

>
1

2

 −3
1
2

 −3
1
2

> +
1

2

 1
3
0

 1
3
0

>

 1

x
x2

 , (9)

i.e. we can decompose the matrix M defining q(x) = [1;x;x2]>M [1;x;2 ] into a non-negative combination of
rank-one outer products, which is true if and only if M � 0.

There is one problem with this, which is that despite our successful decomposition of q, M is self-evidently
not positive semidefinite! (For instance, M22 = −1.) The issue is that the matrix M defining q(x) is not

2



unique. Indeed, any M(a) =

 5 0 −a
0 2a− 1 1
−a 1 2

 would give rise to the same q(x), and a sum-of-squares

decomposition merely implies that M(a) � 0 for some a. Thus, we obtain the following characterization:

q(x) is a sum of squares

k∑
j=1

qj(x)2 ⇐⇒ M(a) � 0 for some a ∈ R. (10)

For the particular decomposition above we took a = 3.

Sum-of-squares in two dimensions. We can generalize the insights to higher-dimensional problems.
Suppose for instance that we wish to check whether q(x, y) = a40x

4 + a31x
3y + a22x

2y2 + a13xy
3 + a04y

4 +
a30x

3 + a21x
2y + a12xy

2 + a03y
3 + a20x

2 + a11xy + a02y
2 + a10x + a01y + a00 is non-negative for all x, y.

Again, this is hard-to-check, but we can hope to check the sufficient condition that q is a sum-of-squares,
which we will express as q �sos 0. As before this is equivalent to checking that a certain matrix is positive
semidefinite. Observe that

q(x, y) =


x2

xy
y2

x
y
1



> 
a40 a31/2 −b a30/2 −c −b′
a31/2 a22 + 2b a13/2 a21/2 + c −c′ −c′′
−b a13/2 a04 a21/2 + c′ a03/2 −b′′
a30/2 a21/2 + c a21/2 + c′ a20 + 2b′ a11/2 + c′′ a10/2
−c −c′ a03/2 a11/2 + c′′ a02 + 2b′′ a01/2
−b′ −c′′ −b′′ a10/2 a01/2 a00




x2

xy
y2

x
y
1

 (11)

for any b, b′, b′′, c, c′, c′′. Call the above expression M(b, b′, b′′, c, c′, c′′), which is linear in each of its variables.
Then we have q �sos 0 if and only if M(b, b′, b′′, c, c′, c′′) � 0 for some setting of the bs and cs.

Sum-of-squares in arbitrary dimensions. In general, if we have a polynomial q(x1, . . . , xd) in d variables,
which has degree 2t, then we can embed it as some matrix M(b) (for decision variables b that capture the
symmetries in M as above), and the dimensionality of M will be the number of monomials of degree at most
t which turns out to be

(
d+t
t

)
= O((d+ t)t).

The upshot is that any constraint of the form q �sos 0, where q is linear in the decision variables, is a
semidefinite constraint in disguise. Thus, we can solve any program of the form

maximize
y

c>y (12)

subject to q1 �sos 0, . . . , qm �sos 0,

where the qj are linear in the decision variables y. (And we are free to throw in any additional linear inequality
or semidefinite constraints as well.) We refer to such optimization problems as sum-of-squares programs, in
analogy to semidefinite programs.

Sum-of-squares for kth moment. Return again to the kth moment problem. As a polynomial program
we sought to minimize λ such that λ(v21 + · · ·+ v2d)k/2 − 〈M2k, v

⊗2k〉 was a non-negative polynomial. It is
then natural to replace the non-negativity constraint with the constraint that λ‖v‖k2 − 〈M2k, v

⊗2k〉 �sos 0.
However, we actually have a bit more flexibility and it turns out that the best program to use is

minimize λ (13)

subject to λ− 〈M2k, v
⊗2k〉+ (‖v‖22 − 1)q(v) �sos 0 for some q of degree at most 2k − 2

Note that the family of all such q can be linearly parameterized and so the above is indeed a sum-of-
squares program. It is always at least as good as the previous program because we can take q(v) =
λ(1 + ‖v‖22 + · · ·+ ‖v‖2k−22 ).

3



When the solution λ∗ to (13) is at most σ2k for M2k(p), we say that p has 2kth moment certifiably bounded
by σ2k. In this case a variation on the filtering algorithm achieves error O(σε1−1/2k). We will not discuss this
in detail, but the main issue we need to resolve to obtain a filtering algorithm is to find some appropriate
tensor T such that 〈T,M2k〉 = λ∗ and T “looks like” the expectation of v⊗2k for some probability distribution
over the unit sphere. Then we can filter using τi = 〈T, (xi − µ̂)⊗2k〉.

To obtain T requires computing the dual of (13), which requires more optimization theory than we have
assumed from the reader, but it can be done in polynomial time. We refer to the corresponding T as a
pseudomoment matrix. Speaking very roughly, T has all properties of a moment matrix that can be “proved
using only sum-of-squares inequalities”, which includes all properties that we needed for the filtering algorithm
to work. We will henceforth ignore the issue of T and focus on assumptions on p that ensure that M2k(p) is
certifiably bounded. The main such assumption is the Poincaré inequality, which we cover in the next section.

4


	Semidefinite Programming and Sum-of-Squares

