STAT260 Problem Set 3

Due March 9th in class

Regular problems:

1. In class we defined sets \mathcal{G}^{\downarrow} and \mathcal{G}^{\uparrow} for an arbitrary loss $L(p, \theta)$. Here we consider the following generalized construction, that also incorporates a *bridge function* $B(p, \theta)$:

$$\mathcal{G}^{\downarrow}(\rho_1,\epsilon) \stackrel{\text{def}}{=} \{ p \mid B(r,\theta^*(p)) \le \rho_1 \text{ whenever } r \le \frac{p}{1-\epsilon} \},\tag{1}$$

$$\mathcal{G}^{\uparrow}(\rho_1, \rho_2, \epsilon) \stackrel{\text{def}}{=} \{ p \mid L(p, \theta) \le \rho_2 \text{ whenever } B(r, \theta) \le \rho_1 \text{ for some } r \le \frac{p}{1 - \epsilon}, \theta \}.$$
(2)

Show that the modulus of continuity of $\mathcal{G}^{\downarrow}(\rho_1, \epsilon) \cap \mathcal{G}^{\uparrow}(\rho_1, \rho_2, \epsilon)$ under L is at most ρ_2 .

- 2. Here we bound the modulus of continuity for linear classification. Given $(x, y) \sim p$ where $x \in \mathbb{R}^d$ and $y \in \{\pm 1\}$, Define $L(p, \theta) = \mathbb{P}_{(x,y)\sim p}[y \neq \operatorname{sign}(\langle x, \theta \rangle] \text{ and } B(p, \theta) = \mathbb{E}_{(x,y)\sim p}[\max(0, 1 y \langle x, \theta \rangle)]$, and let $\theta^*(p)$ be the minimizer of $B(p, \theta)$. Suppose that p satisfies the following two properties:
 - $\mathbb{E}_{(x,y)\sim p}[\max(0, 1 y\langle x, \theta^*(p)\rangle] \le (1 \epsilon)\rho_1$
 - Whenever $\mathbb{P}_{(x,y)\sim p}[y\langle x,\theta\rangle \leq \frac{1}{2}] \leq \epsilon + 2(1-\epsilon)\rho_1$ for some θ , then $\mathbb{P}_{(x,y)\sim p}[y\langle x,\theta\rangle \leq 0] \leq \rho_2$.

Show that $p \in \mathcal{G}^{\downarrow}(\rho_1, \epsilon) \cap \mathcal{G}^{\uparrow}(\rho_2, \epsilon)$.

[Remark: Note that the second condition is a type of tail bound, where in every direction where we are somewhat unlikely to be close to the boundary, we are very unlikely to cross the boundary entirely.]

- 3. Define the norm $||x||_{S_k} = \max_{||v||_2 \le 1, ||v||_0 \le k} \langle x, v \rangle$.
 - (a) What is the dual norm to $\|\cdot\|_{S_k}$? (Note: There isn't a simple closed form; it suffices to provide a description of what the unit norm ball looks like.)
 - (b) Show that if x and y both have at most k non-zero entries, then $||x y||_{\mathcal{S}_{2k}} = ||x y||_2$.
 - (c) Show that any distribution that is (ρ, ϵ) -resilient in the ℓ_2 -norm is also (ρ, ϵ) -resilient in the S_k -norm.
- 4. Let $Z = Y \langle \theta^*(p), X \rangle$. Suppose that instead of the bounded noise condition $\mathbb{E}_p[XZ^2Z^{\top}] \preceq \sigma^2 \mathbb{E}_p[XX^{\top}]$, we instead have $\mathbb{E}_p[Z^4] \leq \tau^4$. Also assume that the distribution is hypercontractive with $\kappa = \mathcal{O}(1)$. Show that this implies the bounded noise condition for some σ that is at most a constant multiple of τ .

Challenge problems (turn in as a separate document typset in LaTeX):

6. Construct a distribution that is $(\sqrt{\epsilon}, \epsilon)$ -resilient in the \mathcal{S}_k -norm for all $\epsilon < 1/4$, but not $(\rho, 1/10)$ -resilient in the ℓ_2 -norm for any $\rho < \Omega(k^{0.1})$.

[The constants 1/4, 1/10, 0.1 are all arbitrarily chosen, the point is to show a polynomial separation between S_k and ℓ_2 for some distribution. Note that your construction will likely need to have d/k going to ∞ as $k \to \infty$.]

7. For linear regression, suppose that p satisfies the following higher-order bounded noise and hypercontractivity conditions:

$$\mathbb{E}_p[Z^8] \le \tau^8, \text{ and } \mathbb{E}_p[\langle X, v \rangle^8] \le \kappa \mathbb{E}_p[\langle X, v \rangle^2]^4.$$
(3)

Show that p is resilient for linear regression with a correspondingly better dependence on ϵ , and design a version of the QuasigradientDescentLinReg algorithm for this case. (For the algorithm, you may assume that we have an oracle for maximizing over v to compute the bounded noise and hypercontractive quantities, and also take the quasigradient bounds as given; the point is to prove analogs of Lemma 3.10 and Lemma 3.11.)