STAT260 Problem Set 3

Due March 9th in class

Regular problems:

1. In class we defined sets \(G^\downarrow \) and \(G^\uparrow \) for an arbitrary loss \(L(p, \theta) \). Here we consider the following generalized construction, that also incorporates a bridge function \(B(p, \theta) \):

\[
G^\downarrow (p_1, \epsilon) \overset{\text{def}}{=} \{ p \mid B(r, \theta^*(p)) \leq p_1 \text{ whenever } r \leq \frac{p}{1-\epsilon} \},
\]

\[
G^\uparrow (p_1, \rho_2, \epsilon) \overset{\text{def}}{=} \{ p \mid L(p, \theta) \leq \rho_2 \text{ whenever } B(r, \theta) \leq p_1 \text{ for some } r \leq \frac{p}{1-\epsilon}, \theta \}. \tag{2}
\]

Show that the modulus of continuity of \(G^\downarrow (p_1, \epsilon) \cap G^\uparrow (p_1, \rho_2, \epsilon) \) under \(L \) is at most \(\rho_2 \).

2. Here we bound the modulus of continuity for linear classification. Given \((x, y) \sim p\) where \(x \in \mathbb{R}^d \) and \(y \in \{\pm 1\} \), define \(L(p, \theta) = \mathbb{P}(x, y)\sim p \mid y \neq \text{sign}(\langle x, \theta \rangle) \) and \(B(p, \theta) = \mathbb{E}(x, y)\sim p \max(0, 1 - y \langle x, \theta \rangle) \), and let \(\theta^*(p) \) be the minimizer of \(B(p, \theta) \). Suppose that \(p \) satisfies the following two properties:

- \(\mathbb{E}(x, y)\sim p \max(0, 1 - y \langle x, \theta^*(p) \rangle) \leq (1-\epsilon) \rho_1 \)
- Whenever \(\mathbb{P}(x, y)\sim p \mid y \langle x, \theta \rangle \leq \frac{1}{2} \) \(\leq \epsilon + 2(1-\epsilon) \rho_1 \) for some \(\theta \), then \(\mathbb{P}(x, y)\sim p \mid y \langle x, \theta \rangle \leq 0 \) \(\leq \rho_2 \).

Show that \(p \in G^\downarrow (p_1, \epsilon) \cap G^\uparrow (p_2, \epsilon) \).

[Remark: Note that the second condition is a type of tail bound, where in every direction where we are somewhat unlikely to be close to the boundary, we are very unlikely to cross the boundary entirely.]

3. Define the norm \(\| x \|_{S_k} = \max_{\| v \|_2 \leq 1, \| v \|_0 \leq k} \langle x, v \rangle \).

(a) What is the dual norm to \(\| \cdot \|_{S_k} \)? (Note: There isn’t a simple closed form; it suffices to provide a description of what the unit norm ball looks like.)

(b) Show that if \(x \) and \(y \) both have at most \(k \) non-zero entries, then \(\| x - y \|_{S_k} = \| x - y \|_2 \).

(c) Show that any distribution that is \((\rho, \epsilon)\)-resilient in the \(\ell_2 \)-norm is also \((\rho, \epsilon)\)-resilient in the \(S_k \)-norm.

4. Let \(Z = Y - \langle \theta^*(p), X \rangle \). Suppose that instead of the bounded noise condition \(\mathbb{E}_p[X Z^2 Z^\top] \leq \sigma^2 \mathbb{E}_p[X X^\top] \), we instead have \(\mathbb{E}_p[Z^4] \leq \tau^4 \). Also assume that the distribution is hypercontractive with \(\kappa = \mathcal{O}(1) \). Show that this implies the bounded noise condition for some \(\sigma \) that is at most a constant multiple of \(\tau \).

Challenge problems (turn in as a separate document typset in LaTeX):

6. Construct a distribution that is \((\sqrt{\epsilon}, \epsilon)\)-resilient in the \(S_k \)-norm for all \(\epsilon < 1/4 \), but not \((\rho, 1/10)\)-resilient in the \(\ell_2 \)-norm for any \(\rho < \Omega(k^{0.1}) \).

[The constants 1/4, 1/10, 0.1 are all arbitrarily chosen, the point is to show a polynomial separation between \(S_k \) and \(\ell_2 \) for some distribution. Note that your construction will likely need to have \(d/k \) going to \(\infty \) as \(k \to \infty \).]
7. For linear regression, suppose that p satisfies the following higher-order bounded noise and hypercontractivity conditions:

$$E_p[Z^8] \leq \tau^8, \quad \text{and} \quad E_p[(X,v)^8] \leq \kappa E_p[(X,v)^2]^4.$$ (3)

Show that p is resilient for linear regression with a correspondingly better dependence on ϵ, and design a version of the QuasigradientDescentLinReg algorithm for this case. (For the algorithm, you may assume that we have an oracle for maximizing over v to compute the bounded noise and hypercontractive quantities, and also take the quasigradient bounds as given; the point is to prove analogs of Lemma 3.10 and Lemma 3.11.)