Regular problems:

1. Suppose that \(p^* \) has bounded \(k \)th moments in the sense that \(E[|X - \mu|^k] \leq \sigma^k \) for some \(\sigma \). Show that the trimmed mean applied to \(\tilde{p} \) has error \(O(\sigma \epsilon^{1-k}) \) if \(TV(\tilde{p}, p^*) \leq \epsilon \).

2. Call a distribution \(p \) over \(\mathbb{R} \) \((s, \epsilon)\)-stable if \(\mathbb{P}_{x \sim p}[x \geq \mu + s] < \frac{1}{2} - \epsilon \) and \(\mathbb{P}_{x \sim p}[x \leq \mu - s] < \frac{1}{2} - \epsilon \). If \(p^* \) is \((s, \epsilon)\)-stable, show that the median applied to \(\tilde{p} \) estimates the mean with error at most \(s \).

3. Show that a 1-dimensional Gaussian with variance \(\sigma^2 \) is \((O(\sigma \epsilon), \epsilon)\)-stable for \(\epsilon \leq \frac{1}{4} \).

4. Call a distribution \(p \) over \(\mathbb{R}^d \) \((s, \epsilon)\)-stable if \(\langle X, v \rangle \) is \((s, \epsilon)\)-stable for \(X \sim p \) and all unit vectors \(v \). Show that the empirical distribution of \(n \) samples from \(p \) is \((2s, \epsilon^2 - O(\sqrt{d/n}))\)-stable around the true mean \(\mu \) with probability at least \(1 - 2 \exp(-c\epsilon^2 n) \) for a constant \(c > 0 \). [Hint: first show this in 1 dimension, then union bound.]

5. For a distribution \(p \), define the Tukey median \(\hat{\theta}_{\text{Tukey}} \) as

\[
\hat{\theta}_{\text{Tukey}}(p) = \arg \max_{\theta \in \mathbb{R}^d} D(\theta), \quad \text{where} \quad D(\theta) = \inf_{v \in \mathbb{R}^d} \mathbb{P}_{X \sim p}[(X - \theta, v) \geq 0].
\]

(1)

This is also sometimes called the maximum depth point. Define the Tukey depth to be the maximum value of \(D(\theta) \).

Show that if \(p^* \) has Tukey depth \(D \) and is \((s, c \cdot (\epsilon + (1/2 - D)))\)-stable for a sufficiently large constant \(c \), then \(\|\hat{\theta}_{\text{Tukey}}(\tilde{p}) - \mu(p)\|_2 \leq s \).

Challenge problems (credit for at most one; turn in as a separate document typset in LaTeX):

6. Let \(p_n^* \) be the empirical distribution of \(n \) samples from \(\mathcal{N}(\mu, \sigma^2 I) \), and suppose that \(TV(\tilde{p}_n, p_n^*) \leq \epsilon \). Show that with high probability, the Tukey median applied to \(\tilde{p}_n \) estimates \(\mu \) with error \(O(\sigma \epsilon) \) as long as \(\epsilon \) is sufficiently small and \(n \gg \frac{d}{\epsilon^2} \). [You may assume the results of the previous exercises.]

7. The geometric median \(\hat{\theta}_{\text{geom}}(p) \) is defined as the minimizer \(\theta \) of \(E_{X \sim p}[\|X - \theta\|_2] \). Let \(p^* = \mathcal{N}(\mu, I) \) and suppose that \(TV(\tilde{p}, p^*) \leq \epsilon \) and the new perturbed points in \(\tilde{p} \) are constrained to have norm at most \(2\sqrt{d} \). Construct such a \(\tilde{p} \) such that \(\|\hat{\theta}_{\text{geom}}(\tilde{p}) - \mu(p)\|_2 = \Omega(\epsilon \sqrt{d}) \).