STAT260 Problem Set 1

Due February 4th in class

Regular problems:

- 1. Suppose that p^* has bounded kth moments in the sense that $\mathbb{E}[|X \mu|^k] \leq \sigma^k$ for some σ . Show that the trimmed mean applied to \tilde{p} has error $\mathcal{O}(\sigma \epsilon^{1-1/k})$ if $\mathsf{TV}(\tilde{p}, p^*) \leq \epsilon$.
- 2. Call a distribution p over $\mathbb{R}(s, \epsilon)$ -stable if $\mathbb{P}_{x \sim p}[x \geq \mu + s] < \frac{1}{2} \epsilon$ and $\mathbb{P}_{x \sim p}[x \leq \mu s] < \frac{1}{2} \epsilon$. If p^* is (s, ϵ) -stable, show that the median applied to \tilde{p} estimates the mean with error at most s.
- 3. Show that a 1-dimensional Gaussian with variance σ^2 is $(\mathcal{O}(\sigma\epsilon), \epsilon)$ -stable for $\epsilon \leq \frac{1}{4}$.
- 4. Call a distribution p over \mathbb{R}^d (s, ϵ) -stable if $\langle X, v \rangle$ is (s, ϵ) -stable for $X \sim p$ and all unit vectors v. Show that the empirical distribution of n samples from p is $(2s, \frac{\epsilon}{2} \mathcal{O}(\sqrt{d/n}))$ -stable around the true mean μ with probability at least $1 2\exp(-c\epsilon^2 n)$ for a constant c > 0. [Hint: first show this in 1 dimension, then union bound.]
- 5. For a distribution p, define the Tukey median $\hat{\theta}_{\text{Tukey}}$ as

$$\hat{\theta}_{\mathsf{Tukey}}(p) = \underset{\theta \in \mathbb{R}^d}{\arg\max} D(\theta), \text{ where } D(\theta) = \inf_{v \in \mathbb{R}^d} \mathbb{P}_{X \sim p}[\langle X - \theta, v \rangle \ge 0].$$
(1)

This is also sometimes called the maximum depth point. Define the *Tukey depth* to be the maximum value of $D(\theta)$.

Show that if p^* has Tukey depth D and is $(s, c \cdot (\epsilon + (1/2 - D)))$ -stable for a sufficiently large constant c, then $\|\hat{\theta}_{\mathsf{Tukey}}(\tilde{p}) - \mu(p)\|_2 \leq s$.

Challenge problems (credit for at most one; turn in as a separate document typset in LaTeX):

- 6. Let p_n^* be the empirical distribution of n samples from $\mathcal{N}(\mu, \sigma^2 I)$, and suppose that $\mathsf{TV}(\tilde{p}_n, p_n^*) \leq \epsilon$. Show that with high probability, the Tukey median applied to \tilde{p}_n estimates μ with error $\mathcal{O}(\sigma\epsilon)$ as long as ϵ is sufficiently small and $n \gg \frac{d}{\epsilon^2}$. [You may assume the results of the previous exercises.]
- 7. The geometric median $\hat{\theta}_{geom}(p)$ is defined as the minimizer θ of $\mathbb{E}_{X \sim p}[||X \theta||_2]$. Let $p^* = \mathcal{N}(\mu, I)$ and suppose that $\mathsf{TV}(\tilde{p}, p^*) \leq \epsilon$ and the new perturbed points in \tilde{p} are constrained to have norm at most $2\sqrt{d}$. Construct such a \tilde{p} such that $\|\hat{\theta}_{geom}(\tilde{p}) - \mu(p)\|_2 = \Omega(\epsilon\sqrt{d})$.