[Lecture 9]

0.1 Approximate Eigenvectors in Other Norms

Algorithm 77 is specific to the fo-norm. Let us suppose that we care about recovering an estimate /i such
that [|pr — fi| is small in some norm other than ¢y (such as the ¢;-norm, which may be more appropriate
for some combinatorial problems). It turns out that an analog of bounded covariance is sufficient to enable
estimation with the typical O(c+/€) error, as long as we can approximately solve the analogous eigenvector
problem. To formalize this, we will make use of the dual norm:

Definition 0.1. Given a norm || - ||, the dual norm || - ||« is defined as

lull. = sup {u,v). 1)
llvl2<1
As some examples, the dual of the fo-norm is itself, the dual of the ¢;-norm is the f.,-norm, and the dual
of the £o-norm is the ¢1-norm. An important property (we omit the proof) is that the dual of the dual is the
original norm:

Proposition 0.2. If || - || is a norm on a finite-dimensional vector space, then || - ||« = - |-

For a more complex example: let ||v]/(z) be the sum of the k largest coordinates of v (in absolute value).
Then the dual of || - [|(x) is max(||u| s, [|u]|1/k). This can be seen by noting that the vertices of the constraint
set {u | [|[ulloo < 1, |Julls < k} are exactly the k-sparse {—1,0,+1}-vectors.

Let Geov(a, ]| - ||) denote the family of distributions satisfying maxj,, <1 v' Cov,[X]v < 0. Then Geoy is
resilient exactly analogously to the /5>-case:

Proposition 0.3. If p € Geou(o, | - ||) and r < £, then [|u(r) — u(p)|| < 2 5. In other words, all
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distributions in Geoy(a, || - ||) are (e, O(o+/€))-resilient.

Proof. We have that ||u(r) — p(p)|| = (u(r) — p(p),v) for some vector v with ||v|l. = 1. The result then
follows by resilience for the one-dimensional distribution (X, v) for X ~ p. O

When p* € Geo(o, || - ||), we will design efficient algorithms analogous to Algorithm ??. The main
difficulty is that in norms other than /3, it is generally not possible to exactly solve the optimization problem
max|y|, <1 v 3. that is used in Algorithm ??. We instead make use of a r-approzimate oracle:

Definition 0.4. A function A(X) is a k-approximate oracle if for all ¥, M = A(X) is a positive semidefinite
matrix satisfying
(M,%) > sup v' Xv, and (M,%') <x sup v'¥v for all ¥’ > 0. (2)
llvll.<1 flvll- <1
Thus a k-approximate oracle over-approximates (va,Z for the maximizing vector v on X, and it

underapproximates (vv ', ') within a factor of & for all X/ # 3. Given such an oracle, we have the following
analog to Algorithm ?7:

Algorithm 1 FilterNorm

: Initialize weights c¢1,...,¢, = 1.

. Compute the empirical mean ji. of the data, fi, = (i cimi) /(X ).

. Compute the empirical covariance 3. def S iz — fie) (i — i) T/ Y i

: Let M = A(ic) be the output of a k-approximate oracle.

If (M,>,.) < 20k0?, output g(c).

: Otherwise, let 7; = (z; — fic) " M(x; — fi.), and update ¢; < ¢; - (1 — T;/Tmax ), Where Tax = max; 7;.
: Go back to line 2.
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Algorithm 1 outputs an estimate of the mean with error O(o+/ke). The proof is almost exactly the same
as Algorithm ?7?; the main difference is that we need to ensure that (X, M), the inner product of M with the
true covariance, is not too large. This is where we use the x-approximation property. We leave the detailed
proof as an exercise, and focus on how to construct a k-approximate oracle \A.



Semidefinite programming. As a concrete example, suppose that we wish to estimate p in the ¢;-norm
lv]] = Z?Zl |vj]. The dual norm is the £o-norm, and hence our goal is to approximately solve the optimization
problem

maximize v' Lo subject to ||v] < 1. (3)

The issue with (3) is that it is not concave in v because of the quadratic function v Xv. However, note
that v"Xv = (X, vv"). Therefore, if we replace v with the variable M = vv ', then we can re-express the
optimization problem as

maximize (X, M) subject to M;; <1 for all j, M > 0,rank(M) = 1. (4)

Here the first constraint is a translation of ||v||o < 1, while the latter two constrain M to be of the form vv .

This is almost convex in M, except for the constraint rank(M) = 1. If we omit this constraint, we obtain
the optimization

maximize (X, M)
subject to M;; =1 for all j,
M = 0. (5)

Note that here we replace the constraint M;; < 1 with M;; = 1; this can be done because the maximizer of
(5) will always have M;; =1 for all j. For brevity we often write this constraint as diag(M) = 1.

The problem (5) is a special instance of a semidefinite program and can be solved in polynomial time (in
general, a semidefinite program allows arbitrary linear inequality or positive semidefinite constraints between
linear functions of the decision variables; we discuss this more below).

The optimizer M* of (5) will always satisfy (X, M*) > sup, <1 v T v because and v with [|ve < 1
yields a feasible M. The key is to show that it is not too much larger than this. This turns out to be a
fundamental fact in the theory of optimization called Grothendieck’s inequality:

Theorem 0.5. If ¥ = 0, then the value of (5) is at most § supj,_ <1 v %o,

See ? for a very well-written exposition on Grothendieck’s inequality and its relation to optimization
algorithms. In that text we also see that a version of Theorem 0.5 holds even when ¥ is not positive
semidefinite or indeed even square. Here we produce a proof based on [todo: cite] for the semidefinite case.

Proof of Theorem 0.5. The proof involves two key relations. To describe the first, given a matrix X let
arcsin[ X | denote the matrix whose 7, j entry is arcsin(X;;) (i.e. we apply arcsin element-wise). Then we have
(we will show this later)

2
max v' Yv = max — (X, arcsin[X]). (6)
lvlloo <1 X >0,diag(X)=1T
The next relation is that
arcsin[X] = X. (7)
Together, these imply the approximation ratio, because we then have
max (3, M) < max (2, arcsin[M]) = T max v’ . (8)
M=0,diag(M)=1 M=0,diag(M)=1 2 o)<t

We will therefore focus on establishing (6) and (7).

To establish (6), we will show that any X with X > 0, diag(X) = 1 can be used to produce a probability
distribution over vectors v such that E[v" $v] = 2(X, arcsin[X]).

First, by Graham/Cholesky decomposition we know that there exist vectors u; such that M;; = (u;, u;)
for all ¢, 5. In particular, M;; = 1 implies that the u; have unit norm. We will then construct the vector v by
taking v; = sign({u;, g)) for a Gaussian random variable g ~ N (0, I).

We want to show that Eg[v;v;] = 2 arcsin({u;, u;)). For this it helps to reason in the two-dimensional
space spanned by v; and v;. Then v;v; = —1 if the hyperplane induced by g cuts between u; and u;, and +1
if it does not. Letting 6 be the angle between u; and u;, we then have Plv,v; = —1] = % and hence

Eyfuig] = (1 0) — = = 2(% — ) = = avesin((us u;)), )



as desired. Therefore, we can always construct a distribution over v for which E[v " $v] = 2(X, arcsin[M]),
hence the right-hand-side of (6) is at most the left-hand-side. For the other direction, note that the maximizing
v on the left-hand-side is always a {—1,+1} vector by convexity of v Yv, and for any such vector we have
2 arcsin[vv "] = vv". Thus the left-hand-side is at most the right-hand-side, and so the equality (6) indeed
holds.

We now turn our attention to establishing (7). For this, let X©* denote the matrix whose i, j entry is

X fj (we take element-wise power). We require the following lemma:
Lemma 0.6. For allk € {1,2,...}, if X = 0 then X®k = 0.

Proof. The matrix X®¥ is a submatrix of X®* where (X®%);, i i1in = Xiy gy = Xipjr- We can verify
that X®% = 0 (its eigenvalues are \;, ---)\;, where \; are the eigenvalues of X), hence so is X®¥ since

submatrices of PSD matrices are PSD. O
With this in hand, we also make use of the Taylor series for arcsin(z): arcsin(z) = > (2(2:2;2 Z;%_:ll =
z+§+-~. Then we have
: _ = (2n)! 1 O(2n+1)
arcsin[X] = X + ; @l 2n + 1X = X, (10)
as was to be shown. This completes the proof. O

Alternate proof (by Mihaela Curmei): We can also show that X®* = 0 more directly. Specifically,
we will show that if A, B = 0 then A ® B > 0, from which the result follows by induction. To show this let
A =73 Niuju] and B =3 vjuj0] and observe that

AGB= (Z )\iuiu;r) O) (Z Vj’Uj’U;r) (11)
i J
= Z )\iyj(uiu;r) O] (’Uj’UjT) (12)
]
=Y Ay (wi ©v)(u; ©vy) T, (13)
b o =0

from which the claim follows. Here the key step is that for rank-one matrices the ® operation behaves nicely:
(uiw] ) © (vjv] ) = (u; © v;)(w; © ;)"
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