[Lecture 9]

0.1 Approximate Eigenvectors in Other Norms

Algorithm ?? is specific to the ℓ_2 -norm. Let us suppose that we care about recovering an estimate $\hat{\mu}$ such that $\|\mu - \hat{\mu}\|$ is small in some norm other than ℓ_2 (such as the ℓ_1 -norm, which may be more appropriate for some combinatorial problems). It turns out that an analog of bounded covariance is sufficient to enable estimation with the typical $\mathcal{O}(\sigma\sqrt{\epsilon})$ error, as long as we can approximately solve the analogous eigenvector problem. To formalize this, we will make use of the *dual norm*:

Definition 0.1. Given a norm $\|\cdot\|$, the *dual norm* $\|\cdot\|_*$ is defined as

$$\|u\|_* = \sup_{\|v\|_2 \le 1} \langle u, v \rangle. \tag{1}$$

As some examples, the dual of the ℓ_2 -norm is itself, the dual of the ℓ_1 -norm is the ℓ_{∞} -norm, and the dual of the ℓ_{∞} -norm is the ℓ_1 -norm. An important property (we omit the proof) is that the dual of the dual is the original norm:

Proposition 0.2. If $\|\cdot\|$ is a norm on a finite-dimensional vector space, then $\|\cdot\|_{**} = \|\cdot\|$.

For a more complex example: let $||v||_{(k)}$ be the sum of the k largest coordinates of v (in absolute value). Then the dual of $||\cdot||_{(k)}$ is $\max(||u||_{\infty}, ||u||_1/k)$. This can be seen by noting that the vertices of the constraint set $\{u \mid ||u||_{\infty} \leq 1, ||u||_1 \leq k\}$ are exactly the k-sparse $\{-1, 0, +1\}$ -vectors.

Let $\mathcal{G}_{cov}(\sigma, \|\cdot\|)$ denote the family of distributions satisfying $\max_{\|v\|_* \leq 1} v^\top \mathsf{Cov}_p[X] v \leq \sigma^2$. Then \mathcal{G}_{cov} is resilient exactly analogously to the ℓ_2 -case:

Proposition 0.3. If $p \in \mathcal{G}_{cov}(\sigma, \|\cdot\|)$ and $r \leq \frac{p}{1-\epsilon}$, then $\|\mu(r) - \mu(p)\| \leq \sqrt{\frac{2\epsilon}{1-\epsilon}}\sigma$. In other words, all distributions in $\mathcal{G}_{cov}(\sigma, \|\cdot\|)$ are $(\epsilon, \mathcal{O}(\sigma\sqrt{\epsilon}))$ -resilient.

Proof. We have that $\|\mu(r) - \mu(p)\| = \langle \mu(r) - \mu(p), v \rangle$ for some vector v with $\|v\|_* = 1$. The result then follows by resilience for the one-dimensional distribution $\langle X, v \rangle$ for $X \sim p$.

When $p^* \in \mathcal{G}_{cov}(\sigma, \|\cdot\|)$, we will design efficient algorithms analogous to Algorithm ??. The main difficulty is that in norms other than ℓ_2 , it is generally not possible to exactly solve the optimization problem $\max_{\|v\|_* \leq 1} v^{\top} \hat{\Sigma}_c v$ that is used in Algorithm ??. We instead make use of a κ -approximate oracle:

Definition 0.4. A function $\mathcal{A}(\Sigma)$ is a κ -approximate oracle if for all Σ , $M = \mathcal{A}(\Sigma)$ is a positive semidefinite matrix satisfying

$$\langle M, \Sigma \rangle \ge \sup_{\|v\|_* \le 1} v^\top \Sigma v$$
, and $\langle M, \Sigma' \rangle \le \kappa \sup_{\|v\|_* \le 1} v^\top \Sigma' v$ for all $\Sigma' \succeq 0$. (2)

Thus a κ -approximate oracle over-approximates $\langle vv^{\top}, \Sigma \rangle$ for the maximizing vector v on Σ , and it underapproximates $\langle vv^{\top}, \Sigma' \rangle$ within a factor of κ for all $\Sigma' \neq \Sigma$. Given such an oracle, we have the following analog to Algorithm ??:

Algorithm 1 FilterNorm

- 1: Initialize weights $c_1, \ldots, c_n = 1$.
- 2: Compute the empirical mean $\hat{\mu}_c$ of the data, $\hat{\mu}_c \stackrel{\text{def}}{=} (\sum_{i=1}^n c_i x_i) / (\sum_{i=1}^n c_i)$.
- 3: Compute the empirical covariance $\hat{\Sigma}_c \stackrel{\text{def}}{=} \sum_{i=1}^n c_i (x_i \hat{\mu}_c) (x_i \hat{\mu}_c)^\top / \sum_{i=1}^n c_i$.
- 4: Let $M = \mathcal{A}(\hat{\Sigma}_c)$ be the output of a κ -approximate oracle.
- 5: If $\langle M, \hat{\Sigma}_c \rangle \leq 20\kappa\sigma^2$, output q(c).
- 6: Otherwise, let $\tau_i = (x_i \hat{\mu}_c)^\top M(x_i \hat{\mu}_c)$, and update $c_i \leftarrow c_i \cdot (1 \tau_i / \tau_{\max})$, where $\tau_{\max} = \max_i \tau_i$.
- 7: Go back to line 2.

Algorithm 1 outputs an estimate of the mean with error $\mathcal{O}(\sigma\sqrt{\kappa\epsilon})$. The proof is almost exactly the same as Algorithm ??; the main difference is that we need to ensure that $\langle \Sigma, M \rangle$, the inner product of M with the true covariance, is not too large. This is where we use the κ -approximation property. We leave the detailed proof as an exercise, and focus on how to construct a κ -approximate oracle \mathcal{A} . Semidefinite programming. As a concrete example, suppose that we wish to estimate μ in the ℓ_1 -norm $||v|| = \sum_{j=1}^d |v_j|$. The dual norm is the ℓ_{∞} -norm, and hence our goal is to approximately solve the optimization problem

maximize
$$v^{\top} \Sigma v$$
 subject to $||v||_{\infty} \le 1.$ (3)

The issue with (3) is that it is not concave in v because of the quadratic function $v^{\top}\Sigma v$. However, note that $v^{\top}\Sigma v = \langle \Sigma, vv^{\top} \rangle$. Therefore, if we replace v with the variable $M = vv^{\top}$, then we can re-express the optimization problem as

maximize
$$\langle \Sigma, M \rangle$$
 subject to $M_{ij} \leq 1$ for all j, $M \succeq 0$, rank $(M) = 1$. (4)

Here the first constraint is a translation of $||v||_{\infty} \leq 1$, while the latter two constrain M to be of the form vv^{\top} .

This is almost convex in M, except for the constraint rank(M) = 1. If we omit this constraint, we obtain the optimization

maximize
$$\langle \Sigma, M \rangle$$

subject to $M_{jj} = 1$ for all j ,
 $M \succeq 0.$ (5)

Note that here we replace the constraint $M_{jj} \leq 1$ with $M_{jj} = 1$; this can be done because the maximizer of (5) will always have $M_{jj} = 1$ for all j. For brevity we often write this constraint as diag(M) = 1.

The problem (5) is a special instance of a *semidefinite program* and can be solved in polynomial time (in general, a semidefinite program allows arbitrary linear inequality or positive semidefinite constraints between linear functions of the decision variables; we discuss this more below).

The optimizer M^* of (5) will always satisfy $\langle \Sigma, M^* \rangle \geq \sup_{\|v\|_{\infty} \leq 1} v^{\top} \Sigma v$ because and v with $\|v\|_{\infty} \leq 1$ yields a feasible M. The key is to show that it is not too much larger than this. This turns out to be a fundamental fact in the theory of optimization called *Grothendieck's inequality*:

Theorem 0.5. If $\Sigma \succeq 0$, then the value of (5) is at most $\frac{\pi}{2} \sup_{\|v\|_{\infty} < 1} v^{\top} \Sigma v$.

See ? for a very well-written exposition on Grothendieck's inequality and its relation to optimization algorithms. In that text we also see that a version of Theorem 0.5 holds even when Σ is not positive semidefinite or indeed even square. Here we produce a proof based on [todo: cite] for the semidefinite case.

Proof of Theorem 0.5. The proof involves two key relations. To describe the first, given a matrix X let $\operatorname{arcsin}[X]$ denote the matrix whose i, j entry is $\operatorname{arcsin}(X_{ij})$ (i.e. we apply arcsin element-wise). Then we have (we will show this later)

$$\max_{\|v\|_{\infty} \le 1} v^{\top} \Sigma v = \max_{X \succeq 0, \operatorname{diag}(X) = 1} \frac{2}{\pi} \langle \Sigma, \operatorname{arcsin}[X] \rangle.$$
(6)

The next relation is that

$$\arcsin[X] \succeq X.$$
 (7)

Together, these imply the approximation ratio, because we then have

$$\max_{M \succeq 0, \operatorname{diag}(M)=1} \langle \Sigma, M \rangle \le \max_{M \succeq 0, \operatorname{diag}(M)=1} \langle \Sigma, \operatorname{arcsin}[M] \rangle = \frac{\pi}{2} \max_{\|v\|_{\infty} \le 1} v^{\top} \Sigma v.$$
(8)

We will therefore focus on establishing (6) and (7).

To establish (6), we will show that any X with $X \succeq 0$, diag(X) = 1 can be used to produce a probability distribution over vectors v such that $\mathbb{E}[v^{\top}\Sigma v] = \frac{2}{\pi} \langle \Sigma, \arcsin[X] \rangle$.

First, by Graham/Cholesky decomposition we know that there exist vectors u_i such that $M_{ij} = \langle u_i, u_j \rangle$ for all i, j. In particular, $M_{ii} = 1$ implies that the u_i have unit norm. We will then construct the vector v by taking $v_i = \operatorname{sign}(\langle u_i, g \rangle)$ for a Gaussian random variable $g \sim \mathcal{N}(0, I)$.

We want to show that $\mathbb{E}_g[v_i v_j] = \frac{2}{\pi} \operatorname{arcsin}(\langle u_i, u_j \rangle)$. For this it helps to reason in the two-dimensional space spanned by v_i and v_j . Then $v_i v_j = -1$ if the hyperplane induced by g cuts between u_i and u_j , and +1 if it does not. Letting θ be the angle between u_i and u_j , we then have $\mathbb{P}[v_j v_j = -1] = \frac{\theta}{\pi}$ and hence

$$\mathbb{E}_g[v_i v_j] = (1 - \frac{\theta}{\pi}) - \frac{\theta}{\pi} = \frac{2}{\pi} (\frac{\pi}{2} - \theta) = \frac{2}{\pi} \operatorname{arcsin}(\langle u_i, u_j \rangle),$$
(9)

as desired. Therefore, we can always construct a distribution over v for which $\mathbb{E}[v^{\top}\Sigma v] = \frac{2}{\pi} \langle \Sigma, \arcsin[M] \rangle$, hence the right-hand-side of (6) is at most the left-hand-side. For the other direction, note that the maximizing v on the left-hand-side is always a $\{-1, +1\}$ vector by convexity of $v^{\top}\Sigma v$, and for any such vector we have $\frac{2}{\pi} \arcsin[vv^{\top}] = vv^{\top}$. Thus the left-hand-side is at most the right-hand-side, and so the equality (6) indeed holds.

We now turn our attention to establishing (7). For this, let $X^{\odot k}$ denote the matrix whose i, j entry is X_{ij}^k (we take element-wise power). We require the following lemma:

Lemma 0.6. For all $k \in \{1, 2, ...\}$, if $X \succeq 0$ then $X^{\odot k} \succeq 0$.

Proof. The matrix $X^{\odot k}$ is a submatrix of $X^{\otimes k}$, where $(X^{\otimes k})_{i_1\cdots i_k,j_1\cdots j_k} = X_{i_1,j_1}\cdots X_{i_k,j_k}$. We can verify that $X^{\otimes k} \succeq 0$ (its eigenvalues are $\lambda_{i_1}\cdots\lambda_{i_k}$ where λ_i are the eigenvalues of X), hence so is $X^{\odot k}$ since submatrices of PSD matrices are PSD.

With this in hand, we also make use of the Taylor series for $\arcsin(z)$: $\arcsin(z) = \sum_{n=0}^{\infty} \frac{(2n)!}{(2^n n!)^2} \frac{z^{2n+1}}{2n+1} = z + \frac{z^3}{6} + \cdots$. Then we have

$$\arcsin[X] = X + \sum_{n=1}^{\infty} \frac{(2n)!}{(2^n n!)^2} \frac{1}{2n+1} X^{\odot(2n+1)} \succeq X,$$
(10)

as was to be shown. This completes the proof.

Alternate proof (by Mihaela Curmei): We can also show that $X^{\odot k} \succeq 0$ more directly. Specifically, we will show that if $A, B \succeq 0$ then $A \odot B \succeq 0$, from which the result follows by induction. To show this let $A = \sum_i \lambda_i u_i u_i^{\top}$ and $B = \sum_j \nu_j v_j v_j^{\top}$ and observe that

$$A \odot B = \left(\sum_{i} \lambda_{i} u_{i} u_{i}^{\top}\right) \odot \left(\sum_{j} \nu_{j} v_{j} v_{j}^{\top}\right)$$
(11)

$$=\sum_{i,j}\lambda_i\nu_j(u_iu_i^{\top})\odot(v_jv_j^{\top})$$
(12)

$$=\sum_{i,j}\underbrace{\lambda_i\nu_j}_{\geq 0}\underbrace{(u_i \odot v_j)(u_i \odot v_j)^{\top}}_{\succeq 0},\tag{13}$$

from which the claim follows. Here the key step is that for rank-one matrices the \odot operation behaves nicely: $(u_i u_i^{\top}) \odot (v_j v_j^{\top}) = (u_i \odot v_j)(u_i \odot v_j)^{\top}$.