
[Lecture 9]

0.1 Approximate Eigenvectors in Other Norms

Algorithm ?? is specific to the `2-norm. Let us suppose that we care about recovering an estimate µ̂ such
that ‖µ − µ̂‖ is small in some norm other than `2 (such as the `1-norm, which may be more appropriate
for some combinatorial problems). It turns out that an analog of bounded covariance is sufficient to enable
estimation with the typical O(σ

√
ε) error, as long as we can approximately solve the analogous eigenvector

problem. To formalize this, we will make use of the dual norm:

Definition 0.1. Given a norm ‖ · ‖, the dual norm ‖ · ‖∗ is defined as

‖u‖∗ = sup
‖v‖2≤1

〈u, v〉. (1)

As some examples, the dual of the `2-norm is itself, the dual of the `1-norm is the `∞-norm, and the dual
of the `∞-norm is the `1-norm. An important property (we omit the proof) is that the dual of the dual is the
original norm:

Proposition 0.2. If ‖ · ‖ is a norm on a finite-dimensional vector space, then ‖ · ‖∗∗ = ‖ · ‖.
For a more complex example: let ‖v‖(k) be the sum of the k largest coordinates of v (in absolute value).

Then the dual of ‖ · ‖(k) is max(‖u‖∞, ‖u‖1/k). This can be seen by noting that the vertices of the constraint
set {u | ‖u‖∞ ≤ 1, ‖u‖1 ≤ k} are exactly the k-sparse {−1, 0,+1}-vectors.

Let Gcov(σ, ‖ · ‖) denote the family of distributions satisfying max‖v‖∗≤1 v
>Covp[X]v ≤ σ2. Then Gcov is

resilient exactly analogously to the `2-case:

Proposition 0.3. If p ∈ Gcov(σ, ‖ · ‖) and r ≤ p
1−ε , then ‖µ(r) − µ(p)‖ ≤

√
2ε
1−εσ. In other words, all

distributions in Gcov(σ, ‖ · ‖) are (ε,O(σ
√
ε))-resilient.

Proof. We have that ‖µ(r) − µ(p)‖ = 〈µ(r) − µ(p), v〉 for some vector v with ‖v‖∗ = 1. The result then
follows by resilience for the one-dimensional distribution 〈X, v〉 for X ∼ p.

When p∗ ∈ Gcov(σ, ‖ · ‖), we will design efficient algorithms analogous to Algorithm ??. The main
difficulty is that in norms other than `2, it is generally not possible to exactly solve the optimization problem
max‖v‖∗≤1 v

>Σ̂cv that is used in Algorithm ??. We instead make use of a κ-approximate oracle:

Definition 0.4. A function A(Σ) is a κ-approximate oracle if for all Σ, M = A(Σ) is a positive semidefinite
matrix satisfying

〈M,Σ〉 ≥ sup
‖v‖∗≤1

v>Σv, and 〈M,Σ′〉 ≤ κ sup
‖v‖∗≤1

v>Σ′v for all Σ′ � 0. (2)

Thus a κ-approximate oracle over-approximates 〈vv>,Σ for the maximizing vector v on Σ, and it
underapproximates 〈vv>,Σ′〉 within a factor of κ for all Σ′ 6= Σ. Given such an oracle, we have the following
analog to Algorithm ??:

Algorithm 1 FilterNorm

1: Initialize weights c1, . . . , cn = 1.

2: Compute the empirical mean µ̂c of the data, µ̂c
def
= (

∑n
i=1 cixi)/(

∑n
i=1 ci).

3: Compute the empirical covariance Σ̂c
def
=

∑n
i=1 ci(xi − µ̂c)(xi − µ̂c)>/

∑n
i=1 ci.

4: Let M = A(Σ̂c) be the output of a κ-approximate oracle.
5: If 〈M, Σ̂c〉 ≤ 20κσ2, output q(c).
6: Otherwise, let τi = (xi − µ̂c)>M(xi − µ̂c), and update ci ← ci · (1− τi/τmax), where τmax = maxi τi.
7: Go back to line 2.

Algorithm 1 outputs an estimate of the mean with error O(σ
√
κε). The proof is almost exactly the same

as Algorithm ??; the main difference is that we need to ensure that 〈Σ,M〉, the inner product of M with the
true covariance, is not too large. This is where we use the κ-approximation property. We leave the detailed
proof as an exercise, and focus on how to construct a κ-approximate oracle A.
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Semidefinite programming. As a concrete example, suppose that we wish to estimate µ in the `1-norm
‖v‖ =

∑d
j=1 |vj |. The dual norm is the `∞-norm, and hence our goal is to approximately solve the optimization

problem
maximize v>Σv subject to ‖v‖∞ ≤ 1. (3)

The issue with (3) is that it is not concave in v because of the quadratic function v>Σv. However, note
that v>Σv = 〈Σ, vv>〉. Therefore, if we replace v with the variable M = vv>, then we can re-express the
optimization problem as

maximize 〈Σ,M〉 subject to Mjj ≤ 1 for all j, M � 0, rank(M) = 1. (4)

Here the first constraint is a translation of ‖v‖∞ ≤ 1, while the latter two constrain M to be of the form vv>.
This is almost convex in M , except for the constraint rank(M) = 1. If we omit this constraint, we obtain

the optimization

maximize 〈Σ,M〉
subject to Mjj = 1 for all j,

M � 0. (5)

Note that here we replace the constraint Mjj ≤ 1 with Mjj = 1; this can be done because the maximizer of
(5) will always have Mjj = 1 for all j. For brevity we often write this constraint as diag(M) = 1.

The problem (5) is a special instance of a semidefinite program and can be solved in polynomial time (in
general, a semidefinite program allows arbitrary linear inequality or positive semidefinite constraints between
linear functions of the decision variables; we discuss this more below).

The optimizer M∗ of (5) will always satisfy 〈Σ,M∗〉 ≥ sup‖v‖∞≤1 v
>Σv because and v with ‖v‖∞ ≤ 1

yields a feasible M . The key is to show that it is not too much larger than this. This turns out to be a
fundamental fact in the theory of optimization called Grothendieck’s inequality :

Theorem 0.5. If Σ � 0, then the value of (5) is at most π
2 sup‖v‖∞≤1 v

>Σv.

See ? for a very well-written exposition on Grothendieck’s inequality and its relation to optimization
algorithms. In that text we also see that a version of Theorem 0.5 holds even when Σ is not positive
semidefinite or indeed even square. Here we produce a proof based on [todo: cite] for the semidefinite case.

Proof of Theorem 0.5. The proof involves two key relations. To describe the first, given a matrix X let
arcsin[X] denote the matrix whose i, j entry is arcsin(Xij) (i.e. we apply arcsin element-wise). Then we have
(we will show this later)

max
‖v‖∞≤1

v>Σv = max
X�0,diag(X)=1

2

π
〈Σ, arcsin[X]〉. (6)

The next relation is that
arcsin[X] � X. (7)

Together, these imply the approximation ratio, because we then have

max
M�0,diag(M)=1

〈Σ,M〉 ≤ max
M�0,diag(M)=1

〈Σ, arcsin[M ]〉 =
π

2
max
‖v‖∞≤1

v>Σv. (8)

We will therefore focus on establishing (6) and (7).
To establish (6), we will show that any X with X � 0, diag(X) = 1 can be used to produce a probability

distribution over vectors v such that E[v>Σv] = 2
π 〈Σ, arcsin[X]〉.

First, by Graham/Cholesky decomposition we know that there exist vectors ui such that Mij = 〈ui, uj〉
for all i, j. In particular, Mii = 1 implies that the ui have unit norm. We will then construct the vector v by
taking vi = sign(〈ui, g〉) for a Gaussian random variable g ∼ N (0, I).

We want to show that Eg[vivj ] = 2
π arcsin(〈ui, uj〉). For this it helps to reason in the two-dimensional

space spanned by vi and vj . Then vivj = −1 if the hyperplane induced by g cuts between ui and uj , and +1
if it does not. Letting θ be the angle between ui and uj , we then have P[vjvj = −1] = θ

π and hence

Eg[vivj ] = (1− θ

π
)− θ

π
=

2

π
(
π

2
− θ) =

2

π
arcsin(〈ui, uj〉), (9)
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as desired. Therefore, we can always construct a distribution over v for which E[v>Σv] = 2
π 〈Σ, arcsin[M ]〉,

hence the right-hand-side of (6) is at most the left-hand-side. For the other direction, note that the maximizing
v on the left-hand-side is always a {−1,+1} vector by convexity of v>Σv, and for any such vector we have
2
π arcsin[vv>] = vv>. Thus the left-hand-side is at most the right-hand-side, and so the equality (6) indeed
holds.

We now turn our attention to establishing (7). For this, let X�k denote the matrix whose i, j entry is
Xk
ij (we take element-wise power). We require the following lemma:

Lemma 0.6. For all k ∈ {1, 2, . . .}, if X � 0 then X�k � 0.

Proof. The matrix X�k is a submatrix of X⊗k, where (X⊗k)i1···ik,j1···jk = Xi1,j1 · · ·Xik,jk . We can verify
that X⊗k � 0 (its eigenvalues are λi1 · · ·λik where λi are the eigenvalues of X), hence so is X�k since
submatrices of PSD matrices are PSD.

With this in hand, we also make use of the Taylor series for arcsin(z): arcsin(z) =
∑∞
n=0

(2n)!
(2nn!)2

z2n+1

2n+1 =

z + z3

6 + · · · . Then we have

arcsin[X] = X +

∞∑
n=1

(2n)!

(2nn!)2
1

2n+ 1
X�(2n+1) � X, (10)

as was to be shown. This completes the proof.

Alternate proof (by Mihaela Curmei): We can also show that X�k � 0 more directly. Specifically,
we will show that if A,B � 0 then A�B � 0, from which the result follows by induction. To show this let
A =

∑
i λiuiu

>
i and B =

∑
j νjvjv

>
j and observe that

A�B = (
∑
i

λiuiu
>
i )� (

∑
j

νjvjv
>
j ) (11)

=
∑
i,j

λiνj(uiu
>
i )� (vjv

>
j ) (12)

=
∑
i,j

λiνj︸︷︷︸
≥0

(ui � vj)(ui � vj)>︸ ︷︷ ︸
�0

, (13)

from which the claim follows. Here the key step is that for rank-one matrices the � operation behaves nicely:
(uiu

>
i )� (vjv

>
j ) = (ui � vj)(ui � vj)>.
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