0.1 Approximate Eigenvectors in Other Norms

Algorithm ?? is specific to the ℓ_2-norm. Let us suppose that we care about recovering an estimate $\hat{\mu}$ such that $||\mu - \hat{\mu}||$ is small in some norm other than ℓ_2 (such as the ℓ_1-norm, which may be more appropriate for some combinatorial problems). It turns out that an analog of bounded covariance is sufficient to enable estimation with the typical $O(\sqrt{\epsilon})$ error, as long as we can approximately solve the analogous eigenvector problem. To formalize this, we will make use of the dual norm:

Definition 0.1. Given a norm $\| \cdot \|$, the dual norm $\| \cdot \|_*$ is defined as

$$
\|u\|_* = \sup_{\|v\|_2 \leq 1} \langle u, v \rangle.
$$

(1)

As some examples, the dual of the ℓ_2-norm is itself, the dual of the ℓ_1-norm is the ℓ_∞-norm, and the dual of the ℓ_∞-norm is the ℓ_1-norm. An important property (we omit the proof) is that the dual of the dual is the original norm:

Proposition 0.2. If $\| \cdot \|$ is a norm on a finite-dimensional vector space, then $\| \cdot \|_* = \| \cdot \|$.

For a more complex example: let $\|v\|_{(k)}$ be the sum of the k largest coordinates of v (in absolute value). Then the dual of $\| \cdot \|_{(k)}$ is $\max(\|u\|_\infty, \|u\|_1/k)$. This can be seen by noting that the vertices of the constraint set $\{ u \mid \|u\|_\infty \leq 1, \|u\|_1 \leq k \}$ are exactly the k-sparse $\{-1,0,+1\}$-vectors.

Let $G_{\text{cov}}(\sigma, \| \cdot \|)$ denote the family of distributions satisfying $\max_{\|v\|_* \leq 1} v^\top \text{Cov}_p [X] v \leq \sigma^2$. Then G_{cov} is resilient exactly analogously to the ℓ_2-case:

Proposition 0.3. If $p \in G_{\text{cov}}(\sigma, \| \cdot \|)$ and $r \leq \frac{p}{1 - \epsilon}$, then $\|\mu(r) - \mu(p)\| \leq \sqrt{\frac{2\epsilon}{1 - \epsilon}} \sigma$. In other words, all distributions in $G_{\text{cov}}(\sigma, \| \cdot \|)$ are $(\epsilon, O(\sqrt{\epsilon}))$-resilient.

Proof. We have that $\|\mu(r) - \mu(p)\| = \langle \mu(r) - \mu(p), v \rangle$ for some vector v with $\|v\|_* = 1$. The result then follows by resilience for the one-dimensional distribution $\langle X, v \rangle$ for $X \sim p$. \qed

When $p^* \in G_{\text{cov}}(\sigma, \| \cdot \|)$, we will design efficient algorithms analogous to Algorithm ???. The main difficulty is that in norms other than ℓ_2, it is generally not possible to exactly solve the optimization problem $\max_{\|v\|_* \leq 1} v^\top \Sigma v$ that is used in Algorithm ???. We instead make use of a κ-approximate oracle:

Definition 0.4. A function $A(\Sigma)$ is a κ-approximate oracle if for all Σ, $M = A(\Sigma)$ is a positive semidefinite matrix satisfying

$$
\langle M, \Sigma \rangle \geq \sup_{\|v\|_* \leq 1} v^\top \Sigma v, \text{ and } \langle M, \Sigma' \rangle \leq \kappa \sup_{\|v\|_* \leq 1} v^\top \Sigma' v \text{ for all } \Sigma' \succeq 0.
$$

(2)

Thus a κ-approximate oracle over-approximates $\langle vv^\top, \Sigma \rangle$ for the maximizing vector v on Σ, and it underapproximates $\langle vv^\top, \Sigma' \rangle$ within a factor of κ for all $\Sigma' \neq \Sigma$. Given such an oracle, we have the following analog to Algorithm ???

Algorithm 1 FilterNorm

1. Initialize weights $c_1, \ldots, c_n = 1$.
2. Compute the empirical mean $\hat{\mu} = \sum_{i=1}^n c_i x_i / \sum_{i=1}^n c_i$.
3. Compute the empirical covariance $\Sigma = \sum_{i=1}^n c_i (x_i - \hat{\mu}) (x_i - \hat{\mu})^\top / \sum_{i=1}^n c_i$.
4. Let $M = A(\Sigma)$ be the output of a κ-approximate oracle.
5. If $\langle M, \Sigma \rangle \leq 20 \kappa \sigma^2$, output $q(c)$.
6. Otherwise, let $\tau_i = (x_i - \hat{\mu})^\top M (x_i - \hat{\mu})$, and update $c_i \leftarrow c_i \cdot (1 - \tau_i / \tau_{\text{max}})$, where $\tau_{\text{max}} = \max_i \tau_i$.
7. Go back to line 2.

Algorithm 1 outputs an estimate of the mean with error $O(\sigma \sqrt{\kappa \epsilon})$. The proof is almost exactly the same as Algorithm ???: the main difference is that we need to ensure that $\langle \Sigma, M \rangle$, the inner product of M with the true covariance, is not too large. This is where we use the κ-approximation property. We leave the detailed proof as an exercise, and focus on how to construct a κ-approximate oracle A.

[Lecture 9]
Semidefinite programming. As a concrete example, suppose that we wish to estimate \(\mu \) in the \(\ell_1 \)-norm \(\|v\| = \sum_{j=1}^d |v_j| \). The dual norm is the \(\ell_\infty \)-norm, and hence our goal is to approximately solve the optimization problem

\[
\text{maximize } v^\top \Sigma v \text{ subject to } \|v\|_\infty \leq 1.
\]

(3)

The issue with (3) is that it is not concave in \(v \) because of the quadratic function \(v^\top \Sigma v \). However, note that \(v^\top \Sigma v = (\Sigma, vv^\top) \). Therefore, if we replace \(v \) with the variable \(M = vv^\top \), then we can re-express the optimization problem as

\[
\text{maximize } \langle \Sigma, M \rangle \text{ subject to } M_{jj} \leq 1 \text{ for all } j, \ M \succeq 0, \ \text{rank}(M) = 1.
\]

(4)

Here the first constraint is a translation of \(\|v\|_\infty \leq 1 \), while the latter two constrain \(M \) to be of the form \(vv^\top \).

This is almost convex in \(M \), except for the constraint \(\text{rank}(M) = 1 \). If we omit this constraint, we obtain the optimization

\[
\text{maximize } \langle \Sigma, M \rangle \\
\text{subject to } M_{jj} = 1 \text{ for all } j, \
\]

\[
M \succeq 0.
\]

(5)

Note that here we replace the constraint \(M_{jj} \leq 1 \) with \(M_{jj} = 1 \); this can be done because the maximizer of (5) will always have \(M_{jj} = 1 \) for all \(j \). For brevity we often write this constraint as \(\text{diag}(M) = 1 \).

The problem (5) is a special instance of a semidefinite program and can be solved in polynomial time (in general, a semidefinite program allows arbitrary linear inequality or positive semidefinite constraints between linear functions of the decision variables; we discuss this more below).

The optimizer \(M^* \) of (5) will always satisfy \(\langle \Sigma, M^* \rangle \geq \sup \|v\|_\infty \leq 1 v^\top \Sigma v \) because and \(v \) with \(\|v\|_\infty \leq 1 \) yields a feasible \(M \). The key is to show that it is not too much larger than this. This turns out to be a fundamental fact in the theory of optimization called Grothendieck’s inequality:

Theorem 0.5. If \(\Sigma \succeq 0 \), then the value of (5) is at most \(\frac{\pi}{2} \sup \|v\|_\infty \leq 1 v^\top \Sigma v \).

See ? for a very well-written exposition on Grothendieck’s inequality and its relation to optimization algorithms. In that text we also see that a version of Theorem 0.5 holds even when \(\Sigma \) is not positive semidefinite or indeed even square. Here we produce a proof based on [todo: cite] for the semidefinite case.

Proof of Theorem 0.5. The proof involves two key relations. To describe the first, given a matrix \(X \) let \(\arcsin[X] \) denote the matrix whose \(i, j \) entry is \(\arcsin(X_{ij}) \) (i.e. we apply \(\arcsin \) element-wise). Then we have (we will show this later)

\[
\max_{\|v\|_\infty \leq 1} v^\top \Sigma v = \max_{X \succeq 0, \ \text{diag}(X) = 1} \frac{2}{\pi} \langle \Sigma, \arcsin[X] \rangle.
\]

(6)

The next relation is that

\[
\arcsin[X] \succeq X.
\]

(7)

Together, these imply the approximation ratio, because we then have

\[
\max_{M \succeq 0, \ \text{diag}(M) = 1} \langle \Sigma, M \rangle \leq \max_{M \succeq 0, \ \text{diag}(M) = 1} \langle \Sigma, \arcsin[M] \rangle = \frac{\pi}{2} \max_{\|v\|_\infty \leq 1} v^\top \Sigma v.
\]

(8)

We will therefore focus on establishing (6) and (7).

To establish (6), we will show that any \(X \) with \(X \succeq 0 \), \(\text{diag}(X) = 1 \) can be used to produce a probability distribution over vectors \(v \) such that \(\mathbb{E}[v^\top \Sigma v] = \frac{2}{\pi} \langle \Sigma, \arcsin[X] \rangle \).

First, by Graham/Cholesky decomposition we know that there exist vectors \(u_i \) such that \(M_{ij} = \langle u_i, u_j \rangle \) for all \(i, j \). In particular, \(M_{ii} = 1 \) implies that the \(u_i \) have unit norm. We will then construct the vector \(v \) by taking \(v_i = \text{sign}(\langle u_i, g \rangle) \) for a Gaussian random variable \(g \sim \mathcal{N}(0, I) \).

We want to show that \(\mathbb{E}_g[v_i v_j] = \frac{2}{\pi} \arcsin(\langle u_i, u_j \rangle) \). For this it helps to reason in the two-dimensional space spanned by \(u_i \) and \(u_j \). Then \(v_i v_j = -1 \) if the hyperplane induced by \(g \) cuts between \(u_i \) and \(u_j \), and +1 if it does not. Letting \(\theta \) be the angle between \(u_i \) and \(u_j \), we then have \(\mathbb{P}[v_i v_j = -1] = \frac{\theta}{\pi} \) and hence

\[
\mathbb{E}_g[v_i v_j] = (1 - \frac{\theta}{\pi}) - \frac{\theta}{\pi} = \frac{2}{\pi} \left(\frac{\pi}{2} - \theta \right) = \frac{2}{\pi} \arcsin(\langle u_i, u_j \rangle),
\]

(9)
as desired. Therefore, we can always construct a distribution over \(v \) for which
\[
\mathbb{E}[v^\top \Sigma v] = \frac{\pi}{4} \langle \Sigma, \arcsin[M] \rangle,
\]
hence the right-hand-side of (6) is at most the left-hand-side. For the other direction, note that the maximizing \(v \) on the left-hand-side is always a \(\{-1, +1\} \) vector by convexity of \(v^\top \Sigma v \), and for any such vector we have
\[
\frac{\pi}{4} \arcsin[vv^\top] = vv^\top.
\]
Thus the left-hand-side is at most the right-hand-side, and so the equality (6) indeed holds.

We now turn our attention to establishing (7). For this, let \(X^{\otimes k} \) denote the matrix whose \(i,j \) entry is \(X^k \), (we take element-wise power). We require the following lemma:

Lemma 0.6. For all \(k \in \{1,2,\ldots\} \), if \(X \succeq 0 \) then \(X^{\otimes k} \succeq 0 \).

Proof. The matrix \(X^{\otimes k} \) is a submatrix of \(X^{\otimes k} \), where \((X^{\otimes k})_{i_1\cdots i_k,j_1\cdots j_k} = X_{i_1,j_1} \cdots X_{i_k,j_k} \). We can verify that \(X^{\otimes k} \succeq 0 \) (its eigenvalues are \(\lambda_{i_1} \cdots \lambda_{i_k} \) where \(\lambda_i \) are the eigenvalues of \(X \)), hence so is \(X^{\otimes k} \) since submatrices of PSD matrices are PSD.

With this in hand, we also make use of the Taylor series for \(\arcsin(z) \):
\[
\arcsin(z) = \sum_{n=0}^{\infty} \frac{(2n)!}{(2^n n!)^2} \frac{z^{2n+1}}{2n+1} = z + \frac{z^3}{6} + \cdots.
\]
Then we have
\[
\arcsin[X] = X + \sum_{n=1}^{\infty} \frac{(2n)!}{(2^n n!)^2} \frac{1}{2n+1} X^{\otimes(2n+1)} \succeq X,
\]
as was to be shown. This completes the proof.

Alternate proof (by Mihaela Curmei): We can also show that \(X^{\otimes k} \succeq 0 \) more directly. Specifically, we will show that if \(A,B \succeq 0 \) then \(A \odot B \succeq 0 \), from which the result follows by induction. To show this let
\[
A = \sum_i \lambda_i u_i u_i^\top \quad \text{and} \quad B = \sum_j \nu_j v_j v_j^\top
\]
and observe that
\[
A \odot B = \left(\sum_i \lambda_i u_i u_i^\top \right) \odot \left(\sum_j \nu_j v_j v_j^\top \right)
\]
\[
= \sum_{i,j} \lambda_i \nu_j (u_i u_i^\top) \odot (v_j v_j^\top)
\]
\[
= \sum_{i,j} \lambda_i \nu_j (u_i \odot v_j) (u_i \odot v_j)^T, \quad \geq 0
\]
from which the claim follows. Here the key step is that for rank-one matrices the \(\odot \) operation behaves nicely:
\[
(u_i u_i^\top) \odot (v_j v_j^\top) = (u_i \odot v_j) (u_i \odot v_j)^T.
\]