
[Lecture 8]

0.1 Efficient Algorithms

We now turn our attention to efficient algorithms. Recall that previously we considered minimum distance

functionals projecting onto sets G andM under distances TV and T̃V. Here we will show how to approximately
project onto the set Gcov(σ), the family of bounded covariance distributions, under TV distance. The basic
idea is to write down a (non-convex) optimization problem that tries to find the projection, and then show
that the cost landscape of this optimization is nice enough that all local minima are within a constant factor
of the global minimum.

To study efficient computation we need a way of representing the distributions p̃ and p∗. To do this we
will suppose that p̃ is the empirical distribution over n points x1, . . . , xn, while p∗ is the empirical distribution
over some subset S of these points with |S| ≥ (1− ε)n. Thus in particular p∗ is an ε-deletion of p̃.

Before we assumed that TV(p∗, p̃) ≤ ε, but taking p′ = min(p∗,p̃)
1−TV(p∗,p̃) , we have p′ ≤ p̃

1−ε and ‖Covp′ [X]‖ ≤
σ2

1−ε ≤ 2σ2 whenever ‖Covp∗ [X]‖ ≤ σ2. Therefore, taking p∗ ≤ p̃
1−ε is equivalent to the TV corruption model

from before for our present purposes.
We will construct an efficient algorithm that, given p̃, outputs a distribution q such that TV(q, p∗) ≤ O(ε)

and ‖Covq[X]‖2 ≤ O(σ2). This is similar to the minimum distance functional, in that it finds a distribution
close to p∗ with bounded covariance; the main difference is that q need not be the projection of p̃ onto Gcov,
and also the covariance of q is bounded by O(σ2) instead of σ2. However, the modulus of continuity bound
from before says that any distribution q that is near p∗ and has bounded covariance will approximate the
mean of p∗. Specifically, we have

‖µ(q)− µ(p∗)‖22 ≤ O(max(‖Covq[X]‖, ‖Covp∗ [X]‖) · TV(p∗, q)) = O(σ2ε). (1)

Actually, we can obtain the tight constants in the O(·):

Lemma 0.1. If TV(p, q) ≤ ε, then ‖µ(p)− µ(q)‖2 ≤
√
‖Σq‖ε
1−ε +

√
‖Σp‖ε
1−ε .

We will prove Lemma 0.1 at the end of the section.
The main result of this section is the following:

Proposition 0.2. Suppose p̃ and p∗ are empirical distributions as above with p∗ ≤ p̃/(1− ε), and further
suppose that ‖Covp∗ [X]‖ ≤ σ2 and ε < 1/3. Then given p̃ (but not p∗), there is an algorithm with runtime

poly(n, d) that outputs a q with TV(p∗, q) ≤ ε and ‖Covq[X]‖
(

1−ε
1−3ε

)2
σ2. In addition, ‖µ(q) − µ(p∗)‖2 ≤

2

√
ε(1−2ε)

1−3ε σ.

Note that the conclusion ‖µ(p∗)− µ(q)‖2 ≤ O(σ
√
ε) follows from the modulus bound on Gcov(σ) together

with the property TV(p∗, q) ≤ ε.
The algorithm, MinCovL2, underlying Proposition 0.2 is given below; it maintains a weighted distribution

q, which places weight qi on point xi. It then computes the weighted mean and covariance, picking the
weights that minimize the norm of the covariance.

The intuition behind Algorithm 1 is as follows: the constraint qi ≤ 1
(1−ε)n ensures that q is an ε-deletion

of the uniform distribution over X1, . . . , Xn. Then, subject to that constraint, Algorithm 1 seeks to minimize
the weighted covariance matrix: note the objective is exactly ‖Σq‖2.

Algorithm 1 is non-trivial to analyze, because although the constraint set is convex, the objective is
non-convex: both qi and µq are linear in q, and so the overall objective (even for a fixed v) is thus a non-convex
cubic in q. On the other hand, for any “reasonable” choice of q, µq should be close to µp∗ . If we apply this
approximation–substituting µp∗ for µq–then the objective becomes convex again. So the main idea behind
the proof is to show that this substitution can be (approximately) done.

Before getting into that, we need to understand what stationary points of (2) look like. In general,
a stationary point is one where the gradient is either zero, or where the point is at the boundary of the
constraint set and the gradient points outward into the infeasible region for the constraints. However, the
supremum of v can lead to a non-differentiable function (e.g. max(x1, x2) is non-differentiable when x1 = x2).
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Algorithm 1 MinCovL2

1: Input: x1, . . . , xn ∈ Rd.
2: Find any stationary point q of the optimization problem:

min
q

sup
‖v‖2≤1

n∑
i=1

qi〈v,Xi − µq〉2, (2)

s.t.µq =
∑
i

qiXi,

q ≥ 0,
∑
i

qi = 1, qi ≤
1

(1− ε)n

3: Output µ̂q, the empirical mean for the stationary point q.

In this case, we can use something called a “Clarke subdifferential”, to show that the preceding conditions
hold for some v that maximizes the supremum:

Lemma 0.3. Suppose that q is a stationary point of (2). Then, for any feasible p, there exists a v ∈ Rd
with ‖v‖2 = 1 such that

Eq[〈v,X − µq〉2] ≤ Ep[〈v,X − µq〉2]. (3)

Moreover, v is a maximizer of the left-hand-side, i.e. v>Σqv = ‖Σq‖.

Proof. Let Fv(q) = Eq[〈v,X − µq〉2]. First, compute ∇Fv(q). We have

∂

∂qi
F (q) =

∂

∂qi

n∑
j=1

qj〈v,Xj − µq〉2 (4)

= 〈v,Xi − µq〉2 + 2

n∑
j=1

qj〈v,Xj − µq〉
∂µq
∂qi

(5)

= 〈v,Xi − µq〉2, (6)

where the last equality is because
∑
j qj(Xj − µq) = 0. Consequently, ∇Fv(q)i = 〈v,Xi − µq〉2.

Now, let F (q) = max‖v‖2=1 Fv(q) = ‖Σq‖. If the maximizing v is unique and equal to v∗, then ∇F (q) =
∇Fv∗(q), and q is a stationary point if and only if

∑
i(qi − pi)∇Fv∗(q)i ≤ 0 for all feasible p, or equivalently

Eq[∠v∗, Xi − µq〉2]− Ep[〈v∗, Xi − µq〉2] ≤ 0, which is exactly the condition (3).
Suppose (the harder case) that the maximizing v is not unique. Then F is not differentiable at q, but

the Clark subdifferential is the convex hull of ∇Fv(q) for all maximizing v’s. Stationarity implies that∑
i(qi − pi)gi ≤ 0 for some g in this convex hull, and thus by convexity that

∑
i(qi − pi)∇Fv∗(q)i ≤ 0 for

some maximizing v∗. This gives us the same desired condition as before and thus completes the proof.

Given Lemma 0.3, we are in a better position to analyze Algorithm 1. In particular, for any p (we will
eventually take the global minimizer p of (2)), Lemma 0.3 yields

‖Covq‖ = Eq[〈v,X − µq〉2] (7)

≤ Ep[〈v,X − µq〉2] (8)

= Ep[〈v,X − µp〉2] + 〈v, µp − µq〉2 (9)

≤ ‖Covp‖+ ‖µp − µq‖22. (10)

The ‖µp − µq‖22 quantifies the “error due to non-convexity”–recall that if we replace µq with a fixed µp in (2),
the problem becomes convex, and hence any stationary point would be a global minimizer. The distance
‖µp − µq‖22 is how much we pay for this discrepancy.

2



Fortunately, µp − µq is small, precisely due to the modulus of continuity! We can show that any feasible

p, q for (2) satisfies TV(p, q) ≤ ε
1−ε (see Lemma 0.4), hence Lemma 0.1 gives ‖µp−µq‖2 ≤

√
‖Σq‖ε
1−2ε +

√
‖Σp‖ε
1−2ε .

Plugging back in to (10), we obtain

‖Covq‖ ≤ ‖Covp‖+
ε

1− 2ε

(√
‖Σp‖+

√
‖Σq‖)2. (11)

For fixed ‖Covp‖, we can view this as a quadratic inequality in
√
‖Σp‖. Solving the quadratic then yields

‖Covq‖ ≤
( 1− ε

1− 3ε

)2

‖Covp‖. (12)

In particular, taking p to be the global minimum p of (2), we have ‖Covp‖ ≤ ‖Covp∗‖ ≤ σ2, so ‖Covq‖ ≤(
1−ε
1−3ε

)2

σ2. Plugging back into Lemma 0.1 again, we then have

‖µq − µp∗‖2 ≤
√

ε

1− 2ε

(
σ +

1− ε
1− 3ε

σ
)

= 2

√
1− 2ε

1− 3ε

√
εσ, (13)

which proves Proposition 0.2.

0.2 Lower Bound (Breakdown at ε = 1/3)

The 1− 3ε in the denominator of our bound means that Proposition 0.2 becomes vacuous once ε ≥ 1/3. Is
this necessary? We will show that it indeed is.

Specifically, when ε = 1/3, it is possible to have:

p∗ =
1

2
δ−a +

1

2
δ0, (14)

p̃ =
1

3
δ−a +

1

3
δ0 +

1

3
δb, (15)

q =
1

2
δ0 +

1

2
δb, (16)

where q is a stationary point no matter how large b is. In particular, µq = b
2 can be arbitrarily far away from

the true mean of −a2 .
To see this more intuitively, note that an equivalent minimization problem to (2) would be to minimize∑n
i=1 qi(xi−µ)2 with respect to both qi and µ (since the minimizer for fixed q is always at µ = µq). Therefore,

a stationary point is one such that:

• The qi are concentrated on the (1− ε)n smallest values of (xi − µ)2

• µ is equal to µq

The distribution q clearly satisfies this: we have µq = b/2, and both 0 and b are closer to µq than −a is.
This also shows why the breakdown point is 1/3 and not smaller. If ε were slightly smaller than 1/3, then

some of the mass of q would have to remain on δ−a. Then as b increases, the mean µq would increase more
slowly, and eventually −a would be closer to µq than b.

0.3 Auxiliary Lemmas

Proof of Lemma 0.1. Note that the proof of Lemma ?? implies that if E is an event with q(E) ≥ 1− ε, then

‖Eq[X]−Eq[X | E]‖ ≤
√
‖Σq‖ ε

1−ε . Now if q, p satisfy TV(p, q) ≤ ε, there is a midpoint r that is an ε-deletion

of both p and q. Applying the preceding result, we thus have ‖Eq[X] − Er[X]‖2 ≤
√
‖Σq‖ ε

1−ε . Similarly

‖Ep[X]− Er[X]‖2 ≤
√
‖Σp‖ ε

1−ε . The result then follows by the triangle inequality.
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Lemma 0.4. Suppose that q, q′ are both ε-deletions of a distribution p. Then TV(q, q′) ≤ ε
1−ε .

Proof. Conceptually, the reason Lemma 0.4 is true is that q′ can be obtained from q by first adding an
ε-fraction of points (to get to p), then deleting an ε-fraction. Since TV ≤ ε exactly allows an ε-fraction of of
additions and deletions, this should yield the result. The reason we get ε

1−ε is because q and q′ are only a
(1− ε)-“fraction” of p, so the ε-deletions are more like ε

1−ε -deletions relative to q and q′.
To be more formal, for any set A, note that we have

q(A) ≤ p(A)

1− ε
and q′(A) ≤ r(A)

1− ε
. (17)

Also, using Ac instead of A, we also get

q(A) ≥ p(A)− ε
1− ε

and q′(A) ≥ p(A)− ε
1− ε

. (18)

Combining these inequalities yields

q(A) ≤ ε+ (1− ε)q′(A)

1− ε
≤ ε

1− ε
+ q′(A), (19)

and similarly q′(A) ≤ ε
1−ε + q(A), which together implies |q(A)− q′(A)| ≤ ε

1−ε . Since this holds for all A, we
obtain our TV distance bound.
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