
[Lecture 17]

0.1 Robust Inference via Partial Specification

In the previous section we saw how using a non-parametric inference method–the bootstrap–allowed us to
avoid the pitfalls of mis-specified parametric models. Next we will explore a different idea, called partial
specification or robust standard errors. Here we stay within a parametric model, but we derive algebraic
formulas that hold even when the particular parametric model is wrong, as long as certain “orthogonality
assumptions” are true.

Specifically, we will consider linear regression, deriving standard error estimates via typical parametric
confidence regions as with GLMs. We will see that these are brittle, but that they are primarily brittle
because they implicitly assume that certain equations hold. If we instead explicitly subtitute the right-hand
side of those equations, we get better confidence intervals that hold under fewer assumptions. As a bonus,
we’ll be able to study how linear regression performs under distribution shift.

Starting point: linear response with Gaussian errors. In the simplest setting, suppose that we
completely believe our model:

Y = 〈β,X〉+ Z, where Z ∼ N (0, σ2I). (1)

We observe samples (x1, y1), . . . , (xn, yn) ∼ p. Suppose that we estimate β using the ordinary least squares
estimator:

β̂ = arg min
β

1

n

n∑
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(yi − 〈β, xi〉)2 = (

n∑
i=1

xix
>
i )−1

n∑
i=1

xiyi. (2)

Define S = 1
n

∑n
i=1 xix

>
i . Then since yi = x>i β + zi, we can further write

β̂ = (

n∑
i=1

xix
>
i )−1(

n∑
i=1

xix
>
i β + xizi) (3)

= (nS)−1(nSβ +

n∑
i=1

xizi) (4)

= β +
1

n
S−1

n∑
i=1

xizi. (5)

From this we see that, conditional on the xi, β̂ − β is a zero-mean Gaussian distribution. Its covariance
matrix is given by

1

n2
S−1

n∑
i=1

E[z2i | xi]xix>i S−1 =
σ2

n
S−1. (6)

Confidence regions. The above calculation shows that the error β̂−β is exactly Gaussian with covariance

matrix σ2

n S
−1 (at least assuming the errors zi are i.i.d. Gaussian). Thus the (parametric) confidence region

for β̂ − β would be an ellipsoid with shape S−1 and radius depending on σ, n, and the significance level α of
the test. As a specific consequence, the standard error for βi is σ

√
(S−1)ii/n. This is the standard error

estimate returned by default in most software packages.
Of course, this all so far rests on the assumption of Gaussian error. Can we do better?

Calculation from moment assumptions. It turns out that our calculation above relied only on condi-
tional moments of the errors, rather than Gaussianity. We will show this explicitly by doing the calculations
more carefully. Re-using steps above, we have that

β̂ − β =
1

n
S−1

n∑
i=1

xizi. (7)
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In particular, assuming that the (xi, yi) are i.i.d., we have

E[β̂ − β | x1, . . . , xn] =
1

n
S−1

n∑
i=1

xiE[zi | xi] = S−1b, (8)

where b
def
= 1

n

∑n
i=1 xiE[zi | xi].

In particular, as long as E[Z | X] = 0 for all X, β̂ is an unbiased estimator for X. In fact, since this only

needs to hold on average, as long as E[ZX] = 0 (covariates uncorrelated with noise) then E[β̂ − β] = 0, and

E[β̂ − β | x1:n] converges to zero as n→∞. This yields an insight that is important more generally:

Orindary least squares yields an unbiased estimate of β whenever the covariates X and noise Z
are uncorrelated.

This partly explains the success of OLS compared to other alternatives (e.g. penalizing the absolute error or
fourth power of the error). While OLS might initially look like the maximum likelihood estimator under
Gaussian errors, it yields consistent estimates of β under much weaker assumptions. Minimizing the fourth
power of the error requires stronger assumptions for consistency, while minimizing the absolute error would
yield a different condition in terms of medians rather than expectations.

Next we turn to the covariance of β̂. Assuming again that the (xi, yi) are independent across i, we have

Cov[β̂ | x1:n] = Cov[
1

n
S−1

n∑
i=1

xizi | x1:n] (9)

=
1

n2
S−1

n∑
i,j=1

xiCov[zi, zj | xi, xj ]x>j S−1 (10)

=
1

n2
S−1

n∑
i=1

xiVar[zi | xi]x>i S−1, (11)

where the final line is because zi, zj are independent for i 6= j. If we define Ω = 1
n

∑n
i=1 xiVar[zi | xi]x>i , then

the final term becomes 1
nS
−1ΩS−1.

This quantity can be upper-bounded under much weaker assumptions than Gaussianity. If we, for instance,

merely assume that Var[zi | xi] ≤ σ2 for all i, then we have that Ω � σ2S and hence Cov[β̂ | x1:n] � σ2

n S
−1.

Even better, this quantity can be estimated from data. Let u2i = (yi− β̂>xi)2. This is a downward-biased,

but asymptotically unbiased, estimate for Var[zi | xi] (it would be unbiased if we used β instead of β̂).
Therefore, form the matrix

Ω̂n =
1

n

n∑
i=1

xiu
2
ix
>
i . (12)

Then 1
nS
−1Ω̂nS

−1 can be used to generate confidence regions and standard errors. In particular, the standard

error estimate for βi is

√
(S−1Ω̂nS−1)ii/n. This is called the robust standard error or heteroskedacity-

consistent standard error.
There are a couple of simple improvements on this estimate. The first is a “degrees of freedom” correction:

we know that u2i is downward-biased, and it is more downward-biased the larger the dimension d (because

then β̂ can more easily overfit). We often instead use 1
n−dS

−1Ω̂nS
−1, which corrects for this.

A fancier correction, based on the jacknnife, first corrects the errors ui, via

u′i = ui/(1− κi), with κi =
1

n
x>i S

−1xi.

We obtain a corresponding Ω′n = 1
n

∑n
i=1 xi(u

′
i)

2x>i , and the matrix for the standard errors is

1

n
S−1(Ω′n − ζζ>)S−1, where ζ =

1

n

n∑
i=1

xiu
′
i.
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The main difference is that each ui gets a different correction factor 1
1−κi

(which is however roughly equal to
n
n−d ) and also that we subtract off the mean ζ. There is some evidence that this more complicated estimator
works better when the sample size is small, see for instance ?.

Out-of-distribution error. Now suppose that we wish to estimate the error on test samples x̄1:m drawn
from a distribution p̄ 6= p. Start again with the Gaussian assumption that y = β>x+ z.

The expected error on sample x̄i (over test noise z̄i) is σ2 + 〈β̂ − β, x̄i〉2. If we let S̄ = 1
m

∑m
i=1 x̄ix̄

>
i , and

let EZ denote the expectation with respect to the training noise z1, . . . , zn, then the overall average expected
error (conditional on x1:n, x̄1:m) is

σ2 + EZ [
1

m

m∑
i=1

(x̄>i (β − β̂))2] = σ2 + 〈 1

m

m∑
i=1

x̄ix̄
>
i ,EZ [(β − β̂)(β − β̂)>]〉 (13)

= σ2 + 〈S̄, σ
2

n
S−1〉 (14)

+ σ2
(

1 +
1

n
〈S̄, S−1〉

)
. (15)

This shows that the error depends on the divergence between the second moment matrices of p(x) and p̄(x):

• When p(x) = p̄(x), then 〈S̄, S−1〉 = tr(S̄S−1) ≈ tr(I) = d, so the error decays as d
n .

• If S is low-rank and is missing any directions that appear in S̄, then the error is infinite. This makes
sense, as we have no way of estimating β along the missing directions, and we need to be able to
estimate β in those directions to get good error under p̄. We can get non-infinite bounds if we further
assume some norm bound on β; e.g. if ‖β‖2 is bounded then the missing directions only contribute
some finite error.

• On the other hand, if S is full-rank but S̄ is low-rank, then we still achieve finite error. For instance,
suppose that S = I is the identity, and S̄ = d

kP is a projection matrix onto a k-dimensional subspace,

scaled to have trace d. Then we get a sample complexity of d
n , although if we had observed samples

with second moment matrix S̄ at training time, we would have gotten a better sample complexity of k
n .

• In general it is always better for S to be bigger. This is partially an artefact of the noise σ2 being the
same for all X, so we would always rather have X be as far out as possible since it pins down β more
effectively. If the noise was proportional to ‖X‖F (for instance) then the answer would be different.

Robust OOD error estimate. We can also estimate the OOD error even when the Gaussian assumption
doesn’t hold, using the same idea as for robust standard errors. Letting z̄i be the noise for x̄i, the squared
error is then 1

m

∑m
j=1(〈β − β̂, x̄i〉+ z̄i)

2, and computing the expectation given x1:n, x̄1:m yields

E[
1

m

m∑
j=1

(〈β − β̂, x̄i〉+ z̄i)
2 | x1:n, x̄1:m] (16)

=
1

m

m∑
i=1

x̄>i E[(β − β̂)(β − β̂)> | x1:n]x̄i + 2x̄>i E[β − β̂ | x1:n]E[z̄i | xi] + E[z̄2i | x̄i] (17)

=
〈
S̄, S−1

( 1

n
Ω + bb>

)
S−1

〉
+ 2
〈
b̄, S−1b

〉
+

1

m

m∑
j=1

E[z̄2i | x̄i]. (18)

To interpret this expression, first assume that the true model is “actually linear”, meaning that b = b̄ = 0.
Then the expression reduces to 1

n 〈S̄, S
−1ΩS−1〉+ 1

m

∑m
j=1 E[z̄2i | xi]. The second term is the intrinsic variance

in the data, while the first term is similar to the 1
n 〈S̄, S

−1〉 term from before, but accounts for correlation
between X and the variation in Z.

If the model is not actually linear, then we need to decide how to define β (since the optimal β is then
no longer independent of the distribution). In that case a natural choice is to let β be the minimizer under
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the training distribution, in which case b→ 0 as n→∞ and thus the 〈b̄, S−1b〉 term conveniently becomes
asymptotically negligible. The twist is that E[z̄2i | x̄i] now measures not just the intrinsic variance but also
the departure from linearity, and could be quite large if the linear extrapolation away from the training points
ends up being poor.

Partial specification. In general, we see that we can actually form good estimates of the mean-squared
error on p̄ making only certain moment assumptions (e.g. b = b̄ = 0) rather than needing to assume the
Gaussian model is correct. This idea is called partial specification, where rather than making assumptions that
are stringent enough to specify a parametric family, we make weaker assumptions that are typically insufficient
to even yield a likelihood, but show that our estimates are still valid under those weaker assumptions. The
weaker the assumptions, the more happy we are. Of course b = b̄ = 0 is still fairly strong, but much better
than Gaussianity. The goal of partial specification aligns with our earlier desire to design estimators for the
entire family of resilient distributions, rather than specific parametric classes. We will study other variants of
partial specification later in the course, in the context of clustering algorithms.
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