
[Lectures 13-14]

1 Resilience Beyond TV Distance

We now turn our attention to distances other than the distance D = TV that we have considered so far. The
family of distances we will consider are called Wasserstein distances. Given a cost function c(x, y) (which is
usually assumed to be a metric), we define the distance Wc(p, q) between two distributions p and q as

Wc(p, q) = inf
π

Ex,y∼π[c(x, y)] (1)

subject to

∫
π(x, y)dy = p(x),

∫
π(x, y)dx = q(y). (2)

This definition is a bit abstruse so let us unpack it. The decision variable π is called a coupling between p
and q, and can be thought of as a way of matching points in p with points in q (π(x, y) is the amount of
mass in p(x) that is matched to q(y)). The Wasserstein distance is then the minimum cost coupling (i.e.,
minimum cost matching) between p and q. Some special cases include:

• c(x, y) = I[x 6= y]. Then Wc is the total variation distance, with the optimal coupling being π(x, x) =
min(p(x), q(x)) (the off-diagonal π(x, y) can be arbitrary as long as the total mass adds up correctly).

• c(x, y) = ‖x− y‖2. Then Wc is the earth-mover distance—the average amount that we need to move
points around to “move” p to q.

• c(x, y) = ‖x− y‖0. Then Wc is the average number of coordinates we need to change to move p to q.

• c(x, y) = ‖x− y‖α2 , for α ∈ [0, 1]. This is still a metric and interpolates between TV and earthmover
distance.

There are a couple key properties of Wasserstein distance we will want to use. The first is that Wc is a metric
if c is:

Proposition 1.1. Suppose that c is a metric. Then Wc is also a metric.

Proof. TBD

The second, called Kantorovich-Rubinstein duality, provides an alternate definition of Wc distance in
terms of functions that are Lipschitz under c, meaning that |f(x)− f(y)| ≤ c(x, y).

Theorem 1.2 (Kantorovich-Rubinstein). Call a function f Lipschitz in c if |f(x)− f(y)| ≤ c(x, y) for all
x, y, and let L(c) denote the space of such functions. If c is a metric, then we have

Wc(p, q) = sup
f∈L(c)

Ex∼p[f(x)]− Ex∼q[f(x)]. (3)

As a special case, take c(x, y) = I[x 6= y] (corresponding to TV distance). Then f ∈ L(c) if and only if
|f(x)− f(y)| ≤ 1 for all x 6= y. By translating f , we can equivalently take the supremum over all f mapping
to [0, 1]. This says that

TV(p, q) = sup
f :X→[0,1]

Ep[f(x)]− Eq[f(x)], (4)

which recovers the definition of TV in terms of the maximum difference in probability of any event E.
As another special case, take c(x, y) = ‖x− y‖2. Then the supremum is over all 1-Lipschitz functions (in

the usual sense).
In the next section, we will see how to generalize the definition of resilience to any Wasserstein distance.
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1.1 Resilience for Wasserstein distances

We show how to extend the idea of resilience to Wasserstein distances Wc. Recall that for TV distance, we
showed that resilient sets have bounded modulus m; this crucially relied on the midpoint property that any
p1, p2 have a midpoint r obtained via deletions of p1 or p2. In other words, we used the fact that any TV
perturbation can be decomposed into a “friendly” operation (deletion) and its opposite (addition). We think
of deletion as friendlier than addition, as the latter can move the mean arbitrarily far by adding probability
mass at infinity.

To extend this to other Wasserstein distances, we need to identify a similar way of decomposing a
Wasserstein perturbation into a friendly perturbation and its inverse. Unfortunately, deletion is closely tied
to the TV distance in particular. To get around this, we use the following re-interpretation: Deletion is
equivalent to movement towards the mean under TV. More precisely:

µ̂ is a possible mean of an ε-deletion of p if and only if some r with mean µ̂ can be obtained from
p by moving points towards µ̂ with TV distance at most ε.

This is more easily seen in the following diagram:

µp µr

Here we can equivalently either delete the left tail of p or shift all of its mass to µr; both yield a modified
distribution with the same mean µr. Thus we can more generally say that a perturbation is friendly if it only
moves probability mass towards the mean. This motivates the following definition:

Definition 1.3 (Friendly perturbation). For a distribution p over X , fix a function f : X → R. A distribution
r is an ε-friendly perturbation of p for f under Wc if there is a coupling π between X ∼ p and Y ∼ r such
that:

• The cost (Eπ[c(X,Y )]) is at most ε.

• All points move towards the mean of r: f(Y ) is between f(X) and Er[f(Y )] almost surely.

Note that friendliness is defined only in terms of one-dimensional functions f : X → R; we will see how to
handle higher-dimensional objects later. Intuitively, a friendly perturbation is a distribution r for which there
exists a coupling that ‘squeezes’ p to µr.

The key property of deletion in the TV case was the existence of a midpoint : for any two distributions
that are within ε in TV, one can find another distribution that is an ε-deletion of both distributions. We
would like to show the analogous result for Wc–i.e. that if Wc(p, q) ≤ ε then there exists an r that is an
ε-friendly perturbation of both p and q for the function f .

The intuitive reason this is true is that any coupling between two one-dimensional distributions can be
separated into two stages: in one stage all the mass only moves towards some point, in the other stage all the
mass moves away from that point. This is illustrated in Figure 1.

To formalize this intuitive argument, we need a mild topological property:

Assumption 1.4 (Intermediate value property). For any x and y and any u with f(x) < u < f(y), there is
some z satisfying f(z) = u and max(c(x, z), c(z, y)) ≤ c(x, y).
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µp1 µrµr µp2

Figure 1: Illustration of midpoint lemma. For any distributions p1, p2 that are close under Wc, the coupling
between p1 and p2 can be split into couplings πp1,r, πp2,r such that p1, p2 only move towards µr under the
couplings. We do this by “stopping” the movement from p1 to p2 at µr.

This holds for any f if c = I[x 6= y] (TV distance), and for any continuous f if c is a path metric (a metric
with “nice” paths between points, which includes the `2-distance). Under this assumption we can prove the
desired midpoint lemma:

Lemma 1.5 (Midpoint lemma for Wc). Suppose Assumption 1.4 holds. Then for any p1 and p2 such that
Wc(p1, p2) ≤ ε and any f , there exists a distribution r that is an ε-friendly perturbation of both p1 and p2
with respect to f .

Proof. Given any two points x and y, without loss of generality we assume f(x) ≤ f(y). Define

sxy(u) =


min(f(x), f(y)), u ≤ min(f(x), f(y))

u, u ∈ [f(x), f(y)]

max(f(x), f(y)), u ≥ max(f(x), f(y)).

(5)

If we imagine u increasing from −∞ to +∞, we can think of sxy as a “slider” that tries to be as close to
u as possible while remaining between f(x) and f(y).

By Assumption 1.4, there must exist some point z such that max(c(x, z), c(z, y)) ≤ c(x, y) and f(z) =
sxy(u). Call this point zxy(u).

Given a coupling π(x, y) from p1 to p2, if we map y to zxy(u), we obtain a coupling π1(x, z) to some
distribution r(u), which by construction satisfies the squeezing property, except that it squeezes towards
u rather than towards the mean µ(u) = EX∼r(u)[f(X)]. However, note that u − µ(u) is a continuous,
monotonically non-decreasing function (since u− sxy(u) is non-decreasing) that ranges from −∞ to +∞. It
follows that there is a u∗ with µ(u∗) = u∗. Then the couplings to r(u∗) squeeze towards its mean µ(u∗).

Moreover, E(X,Z)∼π1
[c(X,Z)] ≤ E(X,Y )∼π[c(X,Y )] = Wc(p1, p2). The coupling π1 therefore also has small

enough cost, and so is a friendly perturbation. Similarly, the coupling π2 mapping y to zxy(u∗) satisfies the
squeezing property and has small enough cost by the same argument.

Defining resilience: warm-up. With Lemma 1.5 in hand, we generalize resilience to Wasserstein distances
by saying that a distribution is resilient if Er[f(X)] is close to Ep[f(X)] for every η-friendly perturbation r
and every function f lying within some appropriate family F . For now, we will focus on second moment
estimation under W‖·‖2 (we consider second moment estimation because mean estimation is trivial under
W‖·‖2). This corresponds to the loss function

L(p, S) = ‖Ex∼p[xx>]− S‖. (6)

For notational convenience we also typically denote W‖·‖2 as W1.
For the loss L(p, S), we will take our family F to be all functions of the form fv(x) = 〈x, v〉2 with ‖v‖2 = 1.

Thus we define the (ρ, ε)-resilient distributions under W1 as

GW1
sec (ρ, ε) = {p | |Er[〈x, v〉2]− Ep[〈x, v〉2]| ≤ ρ whenever r is ε-friendly under 〈x, v〉2 and ‖v‖2 = 1}. (7)

3



Note the twist in the definition of GW1
sec –the allowed r depends on the current choice of v, since friendliness is

specific to the function fv = 〈x, v〉2, which is different from deletions in the TV case.
We will first show that GW1

sec has small modulus, then derive sufficient moment conditions for p to be
(ρ, ε)-resilient.

Proposition 1.6. The set of (ρ, ε)-resilient distributions for W1 has modulus m(GW1
sec (ρ, 2ε), ε) ≤ 2ρ.

Proof. For a distribution q, let Sq = Eq[xx>]. Suppose that p1, p2 ∈ GW1
sec (ρ, ε) and W1(p1, p2) ≤ 2ε. For any

v, by Lemma 1.5, there exists an r that is a (2ε)-friendly perturbation of both p1 and p2 with respect to 〈x, v〉2.
We conclude that |Epi [〈x, v〉2]−Er[〈x, v〉2]| ≤ ρ for i = 1, 2, and hence |Ep1 [〈x, v〉2]−Ep2 [〈x, v〉2]| ≤ 2ρ, which
can be written as |v>(Sp1 − Sp2)v| ≤ 2ρ. Taking the sup over ‖v‖2 = 1 yields ‖Sp1 − Sp2‖ ≤ 2ρ. Since
L(p1, θ

∗(p2)) = ‖Sp1 − Sp2‖, this gives the desired modulus bound.

Sufficient conditions for W1-resilience. Recall that for mean estimation under TV perturbation, any
distribution with bounded ψ-norm was (O(εψ−1(1/ε)), ε)-resilient. In particular, bounded covariance dis-
tributions were (O(

√
ε), ε)-resilient. We have an analogous result for W1-resilience, but with a modified ψ

function:

Proposition 1.7. Let ψ be an Orlicz function, and define ψ̃(x) = xψ(2x). Suppose that X (not X − µ) has
bounded ψ̃-norm: Ep[ψ̃(|v>X|/σ)] ≤ 1 for all unit vectors v. Also assume that the second moment of p is at
most σ2. Then p is (ρ, ε) resilient for ρ = max(σεψ−1( 2σ

ε ), 4ε2 + 2εσ).

Let us interpret Proposition 1.7 before giving the proof. Take for instance ψ(x) = x2. Then Proposition 1.7
asks for the 3rd moment to be bounded by σ3/4. In that case we have ρ = σεψ−1(2σ/ε) =

√
2σ3/2ε1/2. If

the units seem weird, remember that ε has units of distance (before it was unitless) and hence σ3/2ε1/2 has
quadratic units, which matches the second moment estimation task.

More generally, taking ψ(x) = xk, we ask for a (k + 1)st moment bound and get error O(σ1+1/kε1−1/k).
We now turn to proving Proposition 1.7. A helpful auxiliary lemma (here and later) proves a way to use

Orlicz norm bounds:

Lemma 1.8. Let p and q be two distributions over X , g : X → R be any function, c be a non-negative cost
function, and ψ be an Orlicz function. Then for any coupling πp,q between p and q and any σ > 0 we have

|EX∼p[g(X)]− EY∼q[g(Y )]| ≤ σEπp,q [c(X,Y )]ψ−1

(
Eπp,q

[
c(X,Y )ψ

( |g(X)−g(Y )|
σc(X,Y )

)]
Eπp,q [c(X,Y )]

)
. (8)

Proof. Note that |Ep[g(X)] − Eq[g(Y )]| = |Eπ[g(X) − g(Y )]|. We weight the coupling π by the cost c to
obtain a new probability measure π′(x, y) = c(x, y)π(x, y)/E[c(x, y)]. We apply Jensen’s inequality under π′

as follows:

ψ
(∣∣∣Eπ[g(X)− g(Y )]

σEπ[c(X,Y )]

∣∣∣) = ψ
(∣∣∣Eπ[ c(X,Y )

E[c(X,Y )]
· g(X)− g(Y )

σc(X,Y )

]∣∣∣) (9)

= ψ
(∣∣∣Eπ′[g(X)− g(Y )

σc(X,Y )

]∣∣∣) (10)

≤ Eπ′
[
ψ
( |g(X)− g(Y )|

σc(X,Y )

)]
(11)

= Eπ
[
c(X,Y )ψ

( |g(X)− g(Y )|
σc(X,Y )

)]
/Eπ[c(X,Y )]. (12)

Inverting ψ yields the desired result.

Proof of Proposition 1.7. We apply Lemma 1.8 with q = r an ε-friendly perturbation of p under 〈x, v〉2, and
g = 〈x, v〉2; we will also use cost c′(x, y) = |v>(x− y)|, which satisfies c′(x, y) ≤ c(x, y). Taking π to be the
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ε-friendly coupling (under c, not c′) between p and r yields

|Ep[〈x, v〉2]− Er[〈x, v〉2]| ≤ σεψ−1
(
Eπ
[
|〈x− y, v〉|ψ

( |〈x,v〉2−〈y,v〉2|
σ|〈x−y,v〉|

)]
ε

)
(13)

= σεψ−1

(
Eπ
[
|〈x− y, v〉|ψ

(
|〈x, v〉+ 〈y, v〉|/σ

)]
ε

)
. (14)

Now we will split into two cases. First, we observe that the worst-case friendly perturbation will either move
all of the 〈x, v〉2 upwards, or all of the 〈x, v〉2 downwards, since otherwise we could take just the upwards part
or just the downwards part and perturb the mean further. In other words, we either have (i) 〈x, v〉2 ≥ 〈y, v〉2
for all (x, y) ∈ supp(π) with x 6= y, or (ii) 〈x, v〉2 ≤ 〈y, v〉2 for all (x, y) ∈ supp(π) with x 6= y. We analyze
each case in turn.

Case (i): y moves downwards. In this case we can use the bounds |〈x− y, v〉| ≤ 2|〈x, v〉| and |〈x+ y, v〉| ≤
2|〈x, v〉| together with (14) to conclude that

|Ep[〈x, v〉2]− Er[〈x, v〉2]| ≤ σεψ−1
(
Eπ
[
2|〈x, v〉|ψ

(2|〈x, v〉|
σ

)]
/ε
)

(15)

= σεψ−1
(
Ep
[
2σψ̃

( |〈x, r〉|
σ

)]
/ε
)

(16)

≤ σεψ−1(2σ/ε), (17)

where the final inequality is by bounded Orlicz norm of p.
Case (ii): y moved upwards. In this case by friendliness we have that |〈y, v〉|2 ≤ v>Srv whenever

(x, y) ∈ supp(π) and y 6= x. Thus

|〈x− y, v〉|ψ(|〈x, v〉+ 〈y, v〉|/σ) ≤ |〈x− y, v〉|ψ(2|〈y, v〉|/σ) ≤ |〈x− y, v〉|ψ(2
√
v>Srv/σ). (18)

for all (x, y) ∈ supp(π). Plugging back into (14) yields

|Ep[〈x, v〉2]− Er[〈x, v〉2]| ≤ σεψ−1(Eπ[|〈x− y, v〉|ψ(2
√
v>Srv/σ)]/ε) (19)

≤ σεψ−1(ε · ψ(2
√
v>Srv/σ)/ε) (20)

= σε · 2v>Srv/σ = 2ε
√
v>Srv. (21)

Here the final inequality is because Eπ[|〈x − y, v〉|] ≤ Eπ[c(x, y)] ≤ ε under the coupling. Comparing

the left-hand-side to the final right-hand-side yields |v>Spv − v>Srv| ≤ 2ε
√
v>Srv. Thus defining ∆ =

|v>Spv−v>Srv| and using the fact that v>Spv ≤ σ2, we obtain ∆ ≤ 2ε
√

∆ + σ2, which implies (after solving
the quadratic) that ∆ ≤ 4ε2 + 2εσ.

Thus overall we have |Ep[〈x, v〉2]− Er[〈x, v〉2]| ≤ max(σεψ−1(2σ/ε), 4ε2 + 2εσ), as was to be shown.

1.2 Other Results

Our understanding of robust estimation under Wc distances is still rudimentary. Below are a couple of known
results, but many of these may be improved or extended in the near future (perhaps by you!).

The most straightforward extension is from second moment estimation to kth moment estimation. In that
case instead of using ψ̃(x) = xψ(2x), we use ψ̃(x) = xψ(kxk−1). Essentially the same proof goes through.

We can also extend to more general loss functions L(p, θ), as long as L is a convex function of p for fixed
θ (this holds e.g. for any L(p, θ) = Ex∼p[`(θ;x)], since these loss functions are linear in p and hence also
convex). Here the main challenge is defining an appropriate family F of functions for which to consider
friendly perturbations. For second moment estimation our family F was motivated by the obsevation that
L(p, S) = sup{|Ep[fv(x)]− Eq[fv(x)]| | fv(x) = 〈x, v〉2, ‖v‖2 = 1}, but such linear structure need not hold in
general. But we can still exploit linear structure by looking at subgradients of the loss. In particular, we can
take the Fenchel-Moreau representation

L(p, θ) = sup
f∈Fθ

Ex∼p[f(x)]− L∗(f, θ), (22)
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which exists for some Fθ and L∗ whenever L(p, θ) is convex in p. The family Fθ is roughly the family of
subgradients of L(p, θ) as p varies for fixed θ. In this case we obtain conditions G↓ and G↑ as before, asking
that

Er[f(x)]− L∗(f, θ∗(p)) ≤ ρ1 for all f ∈ Fθ∗(p) and ε-friendly r, (↓)

and furthermore

L(p, θ) ≤ ρ2 if for every f ∈ Fθ there is an ε-friendly r such that Er[f(x)]− L∗(f, θ) ≤ ρ1. (↑)

Note that for the second condition (G↓), we allow the perturbation r to depend on the current function f . If
r was fixed this would closely match the old definition, but we can only do that for deletions since in general
even the set of feasible r depends on f .

Using this, we can (after sufficient algebra) derive sufficient conditions for robust linear regression under
W1, for conditions similar to the hypercontractivity condition from before. This will be a challenge problem
on the homework.

Finally, we can define a W̃1 similar to T̃V, but our understanding of it is far more rudimentary. In
particular, known analyses do not seem to yield the correct finite-sample rates (for instance, the rate of
convergence includes an n−1/3 term that seems unlikely to actually exist).
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