
[Lecture 12]

0.1 Efficient Algorithm for Robust Regression

We now turn to the question of efficient algorithms, focusing on linear regression (we will address finite-sample
issues later). Recall that information-theoretically, we found that two conditions are sufficient to imply
resilience:

• Hypercontractivity: For all v, Ex∼p[〈x, v〉4] ≤ κEx∼p[〈x, v〉2]2.

• Bounded noise: Ex∼p[xz2x>] � σ2Ex∼p[xx>].

As for mean estimation under bounded covariance, our strategy will be to write down a non-convex optimization
problem that tries to find small κ and σ, then show that this problem can be approximately solved. Specifically,
let

F1(q) = sup
v

Ex∼q[〈x, v〉4]

Ex∼q[〈x, v〉2]2
, and (1)

F2(q) = sup
v

Ex∼q[〈x, v〉2(y − 〈θ(q), x〉)2]

Ex∼q[〈x, v〉2]
. (2)

Then we seek to find a q such that F1(q) ≤ κ, F2(q) ≤ σ2, and q ∈ ∆n,ε, where ∆n,ε is the set of ε-deletions
of p.

However, there are a couple wrinkles. While with mean estimation we could minimize the objective with
gradient descent, in this case we will need to use quasigradient descent–following a direction that is not the
gradient, but that we can show makes progress towards the optimum. The rough reason for this is that, since
p appears on both the left- and right-hand sides of the inequalities above, the gradients become quite messy,
e.g. ∇F1(q) has a mix of positive and negative terms:

∇F1(q)i =
〈xi, v〉4

Ex∼q[〈x, v〉2]2
− 2

Eq[〈x, v〉4]〈xi, v〉2

Eq[〈x, v〉2]3
, (3)

and it isn’t clear that following them will not land us at bad local minima. To address this, we instead
construct a simpler quasigradient for F1 and F2:

g1(xi; q) = 〈xi, v〉4, where v = arg max
‖v‖2=1

Eq[〈x, v〉4]

Eq[〈x, v〉2]2
, (4)

g2(xi; q) = 〈xi, v〉2(yi − 〈θ∗(q), xi〉)2, where v = arg max
‖v‖2=1

Eq[〈x, v〉2(y − 〈θ∗(q), x〉)2]

Eq[〈x, v〉2]
. (5)

We will then follow g1 until F1 is small, and then follow g2 until F2 is small.
The other wrinkle is that computationally, the hypercontractivity condition is difficult to certify, because

it involves maximizing
Ep[〈x,v〉4]
Ep[〈x,v〉2]2 , which is no longer a straightforward eigenvalue problem as in the mean

estimation case. We’ve already seen this sort of difficulty before–for norms beyond the `2-norm, we had to use
SDP relaxations and Grothendieck’s inequality in order to get a constant factor relaxation. Here, there is also
an SDP relaxation called the sum-of-squares relaxation, but it doesn’t always give a constant factor relaxation.
We’ll mostly ignore this issue and assume that we can find the maximizing v for hypercontractivity.

We are now ready to define our efficient algorithm for linear regression, Algorithm 1. It is closely analogous
to the algorithm for mean estimation (Algorithm ??), but specifies the gradient steps more explicitly.

Analyzing Algorithm 1 enjoys the following loss bound:

Proposition 0.1. Suppose that a set S of (1− ε)n of the xi satisfy:

EpS [〈x, v〉4] ≤ κEpS [〈x, v〉2]2 ∀v ∈ Rd, and EpS [(y − 〈θ∗(pS), x〉)2xx>] � σ2EpS [xx>]. (6)

Then assuming κε ≤ 1
80 , Algorithm 1 terminates and its output has excess loss L(pS , θ

∗(q)) ≤ 40σ2ε.
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Algorithm 1 QuasigradientDescentLinReg

1: Input: (x1, y1), . . . , (xn, yn) ∈ Rd × R.
2: Initialize q ∈ ∆n,ε arbitrarily.
3: while F1(q) ≥ 2κ or F2(q) ≥ 4σ2 do
4: if F1(q) ≥ 2κ then
5: Find the unit vector v that maximizes Eq[〈x, v〉4]/Eq[〈x, v〉2]2.
6: Take a projected gradient step in the direction (g1)i = 〈xi, v〉4.
7: else
8: Compute the empirical least squares regressor: θ∗(q) = (

∑n
i=1 qixix

>
i )−1(

∑n
i=1 qixiyi).

9: Find the unit vector v that maximizes Eq[〈x, v〉2(y − 〈θ∗(q)x〉)2]/Eq[〈x, v〉2].
10: Take a projected gradient step in the direction (g2)i = 〈xi, v〉2(yi − 〈θ∗(q), xi〉)2.
11: end if
12: end while
13: Output θ∗(q).

To prove Proposition 0.1, we need a few ideas. The first is a result from optimization justifying the use of
the quasigradients:

Lemma 0.2 (Informal). Asymptotically, the iterates of Algorithm 1 (or any other low-regret algorithm)
satisfy the conditions

EX∼q[gj(X; q)] ≤ EX∼pS [gj(X; q)] for j = 1, 2. (7)

We will establish this more formally later, and for now assume that (7) holds. Then, asuming this, we will
show that q is both hypercontractive and has bounded noise with constants κ′, σ′ that are only a constant
factor worse than κ and σ.

First, we will show this for hypercontractivity:

Lemma 0.3. Suppose that EX∼q[g1(X; q)] ≤ EX∼pS [g1(X; q)] and that κε ≤ 1
80 . Then q is hypercontractive

with parameter κ′ = 1.5κ.

Proof. Take the maximizing v such that g1(xi; q) = 〈xi, v〉4. To establish hypercontractivity, we want to
show that Eq[〈x, v〉4] is small while Eq[〈x, v〉2]2 is large. Note the quasigradient condition gives us that
Eq[〈x, v〉4] ≤ EpS [〈x, v〉4]; so we will mainly focus on showing that Eq[〈x, v〉2] is large, and in fact not much
smaller than EpS [〈x, v〉2]. Specifically, by the fact that TV(q, pS) ≤ ε

1−ε , together with resilience applied to

〈x, v〉2, we have

|Eq[〈x, v〉2]− EpS [〈x, v〉2]| ≤
( ε

(1− 2ε)2
(Eq[〈x, v〉4] + EpS [〈x, v〉4])

) 1
2

(8)

(i)

≤
( 2ε

(1− 2ε)2
EpS [〈x, v〉4]

) 1
2

(9)

(ii)

≤
( 2κε

(1− 2ε)2

) 1
2EpS [〈x, v〉2], (10)

where (i) uses the quasigradient condition and (ii) uses hypercontractivity for pS . Now assuming that
κε ≤ 1

80 (and hence also ε ≤ 1
80 ), the coefficient on the right-hand-side is at most

√
(1/40)/(1− 1/40)2 < 1

6 .
Consequently |Eq[〈x, v〉2]− EpS [〈x, v〉]2| ≤ 1

6EpS [〈x, v〉2], and re-arranging then yields

Eq[〈x, v〉2] ≥ 5

6
EpS [〈x, v〉2]. (11)

But we already have Eq[〈x, v〉4] ≤ EpS [〈x, v〉2], and so the ratio Eq[〈x, v〉2]/Eq[〈x, v〉2]2 is at most (6/5)2 the
same ratio under pS , and in particular at most (6/5)2κ ≤ 1.5κ.

Next, we will show this for bounded noise assuming that hypercontractivity holds:
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Lemma 0.4. Suppose that F1(q) ≤ 2κ and that EX∼q[g2(X; q)] ≤ EX∼pS [g2(X; q)], and that κε ≤ 1
80 . Then

q has bounded noise with parameter (σ′)2 = 4σ2, and furthermore satisfies L(pS , θ
∗(q)) ≤ 40σ2ε.

Proof. Again take the maximizing v such that g2(xi; q) = 〈xi, v〉2(yi − 〈θ∗(q), xi〉)2. We want to show that q
has bounded noise, or in other words that Eq[g2(x; q)] is small relative to Eq[〈x, v〉2]. By the quasigradient
assumption, we have

Eq[g2(x; q)] + Eq[〈x, v〉2(y − 〈θ∗(q), x〉)2] (12)

≤ EpS [〈x, v〉2(y − 〈θ∗(q), x〉)2]. (13)

Intuitively, we want to use the bounded noise condition for pS to upper-bound the right-hand-side. The
problem is that the term inside the expectation contains θ∗(q), rather than θ∗(pS). But we can handle this
using the AM-RMS inequality. Specifically, we have

EpS [〈x, v〉2(y − 〈θ∗(q), x〉)2] ≤ 2
(
EpS [〈x, v〉2(y − 〈θ∗(pS), x〉)2]︸ ︷︷ ︸

(a)

+EpS [〈x, v〉2〈θ∗(q)− θ∗(pS), x〉2]︸ ︷︷ ︸
(b)

)
. (14)

We will bound (a) and (b) in turn. To bound (a) note that by the bounded noise condition we simply have
(a) ≤ σ2EpS [〈x, v〉2].

To bound (b), let R = EpS [〈θ∗(q)− θ∗(pS), x〉2] = L(pS , θ
∗(q)) be the excess loss of θ∗(q) under pS . We

will upper-bound (b) in terms of R, and then apply resilience to get a bound for R in terms of itself. Solving
the resulting inequality will provide an absolute bound on R and hence also on (b).

More specifically, we have

EpS [〈x, v〉2〈θ∗(q)− θ∗(pS), x〉2]
(i)

≤
(
EpS [〈x, v〉4

)1/4(
EpS [〈θ∗(q)− θ∗(pS), x〉4]

)1/2
(15)

(ii)

≤ κ
(
EpS [〈x, v〉2]

)(
EpS [〈θ∗(q)− θ∗(pS), x〉2

)
(16)

= κREpS [〈x, v〉2]. (17)

Here (i) is Cauchy-Schwarz and (ii) invokes hypercontractivity of pS . Combining the bounds on (a) and (b)
and plugging back in to (14), we obtain

EpS [〈x, v〉2(y − 〈θ∗(q), x〉)2] ≤ 2(σ2 + κR)EpS [〈x, v〉2]. (18)

Remember that we would like a bound such as the above, but with expectations taken with respect to q
instead of pS . For the left-hand-side, we can directly move to Eq[·] using the quasigradient assumption. For
the right-hand-side, since F1(q) ≤ 2κ, the same argument as in (8)-(11) yields (with modified constants) that
Eq[〈x, v〉2] ≥ 4

5EpS [〈x, v〉2]. Applying both of these, we have that

Eq[〈x, v〉2(y − 〈θ∗(q), x〉)2] ≤ 2.5(σ2 + κR)Eq[〈x, v〉2]. (19)

This establishes bounded noise with parameter (σ′)2 = 2.5(σ2 + κR). By assumption, we also have
hypercontractivity with parameter κ′ = 2κ. We are not yet done, because we do not know R. But
recall that R is the excess loss, and so by the resilience conditions for linear regression (Proposition ??) we
have

R ≤ 5ρ(κ′, σ′) ≤ 10(σ′)2ε = 25(σ2 + κR)ε, (20)

as long as ε ≤ 1
8 and κ′ε = 2κε ≤ 1

6 . Re-arranging, we have

R ≤ 25σ2ε

1− 25κε
≤ 40σ2ε, (21)

since κε ≤ 1
80 . Plugging back into σ′, we also have (σ′)2 ≤ 2.5σ2(1 + 40κε) ≤ 4σ2, as claimed.
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Quasigradient bounds via low-regret algorithms. Combining Lemmas 0.2, 0.3, and 0.4 together yields
Proposition 0.1. However, we still need to formalize Lemma 0.2, showing that we can drive the quasigradients
to be small. We can do so with the idea of low-regret online optimization algorithms.

An online optimization algorithm is one that takes a sequence of losses `1(·), `2(·) rather than a fixed loss
`. In traditional optimization, we have a single ` with parameter w, and seek to produce iterates w1, w2, . . .
such that `(wT )− `(w∗)→ 0 as T →∞. In online optimization algorithms, we instead consider the regret,
defined as

RegretT = max
w

1

T

T∑
t=1

`t(wt)− `t(w). (22)

This is the average excess loss compared to the best fixed w, picked in hindsight. We then seek to produce
iterates wt such that RegretT → 0 as T → ∞. Note that when `t = ` is fixed for all t, this is exactly the
same as traditional optimization.

Remarkably, for most “nice” loss functions `t, it is possible to ensure that RegretT → 0; in fact, projected
gradient descent with an appropriate step size will achieve this.

How does this relate to quasigradients? For any quasigradient g(X; q), define the loss function `t(q) =
Ex∼q[g(x; qt)]. Even though this loss depends on qt, the regret is well-defined:

RegretT = max
q′

1

T
Ex∼qt [g(x; qt)]− Ex∼q′ [g(x; qt)] ≥

1

T
Ex∼qt [g(x; qt)]− Ex∼pS [g(x; qt)]. (23)

In particular, as long as RegretT → 0, we asymptotically have that 1
T

∑T
t=1 Ex∼qt [g(x; qt)] ≤

∑T
t=1 Ex∼pS [g(x; qt)],

so eventually the quasigradient bound Ex∼q[g(x; q)] ≤ Ex∼pS [g(x; q)] must (almost) hold for one of the qt.
This is enough to show that, for any fixed quasigradient, a statement such as Lemma 0.2 holds1. However,

we want both g1 and g2 to be small simultaneously.
There are two ways to handle this. The first, crude way is to first use g1 until we have hypercontractivity,

then take the resulting q as our new p̃ (so that we restrict to ε-deletions of q) and running gradient descent
with g2 until we have bounded noise. This uses the fact that ε-deletions of hypercontractive distributions are
still hypercontractive, but yields worse constants (since we need 2ε-deletions instead of ε-deletions).

A slicker approach is to alternate between g1 and g2 as in Algorithm 1. Note that we then still
(asymptotically) have

1

T

T∑
t=1

Ex∼qt [gjt(x; qt)] ≤
T∑
t=1

Ex∼pS [gjt(x; qt)], (24)

where jt ∈ {1, 2} denotes the choice of quasigradient at iteration t of Algorithm 1.
Next note that asymptotically, only a vanishingly small fraction of jt can equal 1, since we only take

quasigradient steps in g1 when F1(q) ≥ 2κ, and in these cases Eqt [g1(x; qt)] is quite a bit larger than
EpS [g1(x; qt)], since if they were equal we would have F1(q) ≤ 1.5κ. Therefore, eventually almost all of the
quasigradient steps are with respect to g2, and so low regret of the entire sum implies low regret of g2. We
therefore both have F1(qt) ≤ 2κ and the quasigradient condition for g2:

Lemma 0.5 (Formal version of Lemma 0.2). Suppose that |g1(xi, q)| ≤ B and |g2(xi, q)| ≤ B for all i, where
B is at most polynomially-large in the problem parameters. Then for any δ, within polynomially many steps
Algorithm 1 generates an iterate qt such that F1(qt) ≤ 2κ and Egt [g2(x, qt)] ≤ EpS [g2(x, qt)] + δ.

Combining Lemma 0.2 with Lemma 0.4 then yields the desired Proposition 0.1.

1 We have to be a bit careful because outliers could make g(x; q) arbitrarily large, which violates the assumptions needed to
achieve low regret. This can be addressed with a pre-filtering step that removes data points that are obviously too large to be
inliers, but we will not worry about this here.
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