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Recap

Overdispersion
Parametric confidence intervals =⇒ overly narrow uncertainty
Last time: can fix with negative binomial model
Are there more model-agnostic ways to fix this?

Yes! (Sort of)
The bootstrap: a nonparametric method for generating confidence intervals
Can work even if CLT doesn’t hold
But can sometimes fail, and need β to at least be meaningful
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Recap of frequentist inference

Data X1, . . . ,Xn ∼ p, parameter θ(p)

Confidence interval at level α : I(X1, . . . ,Xn) (interval on real line) such that

P[θ(p) ∈ I(X1:n)]≥ 1−α

More generally: confidence region satisfies θ(p) ∈ R(X1:n) w.p. 1−α .

Note probability is over random draw of X1, . . . ,Xn (for fixed p).
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Wald confidence ellipsoids for GLMs

Last time looked at statsmodels package, which uses the Wald ellipsoid:

Rα(X1:n) = {z | (z− β̂n)
T In(z− β̂n)≤ F−1(α)},

where β̂n = argminβ Ln(β ) is the maximum likelihood estimate, and

In = ∇2Ln(β̂n) is the Fisher information.

Asymptotic normality implies that F is the cdf of the χ2 distribution.

The above form is specific to maximum likelihood estimators, but similar
confidence ellipsoids exist for any M-estimator.
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Escaping model mis-specification

Saw last time that Wald confidence interval can be wrong if model is wrong

We’ll escape this with a non-parametric tool for producing frequentist CIs

Non-parametric =⇒ doesn’t rely on model =⇒ more robust

Key tool: the bootstrap
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The Bootstrap

Idea for computing confidence intervals by resampling the data

Without bootstrap:

Often rely on model assumptions

Wald test, chi-square test, student-t test, . . .

Lots of algebra, need different formula for each setting

With bootstrap:

Fewer assumptions

Single unified approach

Computer simulation
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Bootstrap: formal setting

Data: X (1), . . . ,X (n) ∼ p

Estimator: θ̂ = θ̂(X (1), . . . ,X (n))

θ ∗: population parameter (that θ̂ converges to as n→ ∞)

Question: How close is θ ∗ to θ̂?

Typically framed as computing distribution of 1√
n
(θ̂ −θ ∗)
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The ideal hypothetical: re-sampling

Population distribution p∗

X (1), . . . ,X (n) ∼ p∗

Noise in θ̂ due to randomness in X (1), . . . ,X (n)

Imagine hypothetically sampling fresh data:

X (1), . . . ,X (n)→ θ̂ (Original sample)

X (1)′, . . . ,X (n)′→ θ̂
′ (Re-sample)

X (1)′′, . . . ,X (n)′′→ θ̂
′′

X (1)′′′, . . . ,X (n)′′′→ θ̂
′′′

...

Implicit commitment: distribution of θ̂ roughly centered on θ ∗ (low bias)
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Counterexample

θ̂(x1, . . . ,xn) = maxn
i=1 xi

n samples: always finite

∞ samples: infinite
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The Boostrap

Want to approximate hypothetical samples θ̂ ′, θ̂ ′′, . . .

But only have actual data x(1), . . . ,x(n)→ θ̂

Idea: subsample data

With replacement

n points in each sample

Useful framing: approximate n samples from p by n samples from p̂n
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Bootstrap: Pseudocode

B: number of bootstrap samples

For b = 1, . . . ,B:

Sample x(1)′, . . . ,x(n)′ with replacement from x(1), . . . ,x(n)

Let θ̂ (b) = θ̂(x(1)′, . . . ,x(n)′)

Output {θ̂ (1), . . . , θ̂ (B)}
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Bootstrap in python

[Jupyter demos]
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When does the bootstrap work?

Most parametric estimators are fine

I.e. fixed number of parameters d and d � n

NOT parametric:

Decision trees

Neural nets

Kernel regression

These “interpolate” data, sampling with replacement ≈ subsampling

Other commitments:

θ̂ approximately unbiased

θ ∗ is a meaningful quantity
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More examples

Bootstrap works for:

Median and other quantiles

Cumulative distribution function

Trimmed mean

Most U-statistics

Doesn’t work for:

De-generate U-statistics, e.g.: U(X1:n) =
1
(n

2)
∑i<j I[Xi = Xj ]e1/Xi

Estimating θ for X ∼ Uniform([0,θ ]).
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Bootstrap: Underlying Theory

We seek to approximate the distribution of some quantity Rn(X1, . . . ,Xn;p) for
X1:n ∼ p

Let L (p) denote the limiting distribution as n→ ∞

For instance, R(X1:n,p) =
µ̂n−µ(p)√

nσ(p)
, and L (p) = N(0,1)

Bootstrap replaces Rn(X1:n,p) with Rn(X ′1:n, p̂n)

Intuitively this replaces L (p) with L (p̂n)
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Bootstrap: Underlying Theory

Bootstrap replaces Rn(X1:n,p) with Rn(X ′1:n, p̂n)

Intuitively this replaces L (p) with L (p̂n)

Issue is there are two limits happening at once. To make this work need:

Rn(q)→L (q) uniformly for q in a neighborhood of p

The mapping p 7→L (p) is continuous

Proof sketch: uniform convergence means that for large n, Rn(p̂n) will be very
close in law to L (p̂n) (need uniformity since p̂n is changing). Then
L (p̂n)→L (p) since p̂n→ p and L is continuous.

See Bickel and Freedman 1981, Some Asymptotic Theory for the Bootstrap.
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Counterexamples Revisited

Nonparametric models (i.e. neural nets) fail because L is not continuous

Other estimators can fail due to lack of uniformity.

E.g. X ∼ U([0,θ ]), take Rn =
θ−Xmax

nθ
. [Here Xmax is the max of the Xi ]

Rn converges to exponential distribution, but bootstrap samples have
Xmax = X ′max with probability 1−e−1.

Some models with growing dimension are actually fine. E.g. can have
dimension n1−δ in regression models and still have bootstrap work. See
Mammen 1992, Bootstrap, wild bootstrap, and asymptotic normality.
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