Lecture 15: Model Mis-specification in Generalized Linear Models

Jacob Steinhardt

March 9, 2021
So far, looked at issues at training time: what happens if data is corrupted.

Now will switch focus: to statistical inferences (e.g. uncertainty estimates or causal estimates).

- In particular, how are things inferences affected by model mis-specification?

This lecture: generalized linear models (GLMs)

- Introduce and review classical uncertainty estimates
- Show these can go very wrong (COVID-19 case study)
- Discuss how to fix
Observe data \((x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\), where \(x^{(i)} \in \mathbb{R}^d\) and \(y^{(i)} \in \mathbb{R}\) or \(y^{(i)} \in \{0, 1\}, \mathbb{N}, \text{etc.}\)

Minimize loss function \(L(\beta) = \frac{1}{n} \sum_{i=1}^{n} \ell(x^{(i)}, y^{(i)}; \beta)\)

Example:
- \(\ell(x, y; \beta) = (y - \beta^\top x)^2\) (least squares regression)
- \(\ell(x, y; \beta) = \log(1 + \exp((−1)^y \beta^\top x))\) (logistic regression)
- Other examples? What about count data?
Observe data \((x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\)

Model \(y \mid x, \beta\) has two parts:

- Prediction of mean via *link function*: \(\mathbb{E}[y \mid x] = g(\beta^\top x)\)
- Exponential family \(F(y \mid \mu)\) with mean \(\mu\):
 - \(y \sim N(\mu, 1)\) (regression)
 - \(y \sim \text{Bernoulli}(\mu)\) (classification)
 - \(y \sim \text{Poisson}(\mu)\) (count data)
Generalized Linear Models

Observe data \((x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\)

Model \(y \mid x, \beta\) has two parts:

- Prediction of mean via *link function*: \(\mathbb{E}[y \mid x] = g(\beta^\top x)\)
- Exponential family \(F(y \mid \mu)\) with mean \(\mu\):
 - \(y \sim N(\mu, 1)\) (regression)
 - \(y \sim \text{Bernoulli}(\mu)\) (classification)
 - \(y \sim \text{Poisson}(\mu)\) (count data)

Link function \(g\) can be arbitrary but often canonical:

- \(F = N(\mu, 1), g(z) = z\)
- \(F = \text{Bernoulli}(\mu), g(z) = \frac{1}{1+\exp(-z)}\)
- \(F = \text{Poisson}(\mu), g(z) = \exp(z)\)
Example: Poisson

Poisson likelihood, exponential link:

\[p(y \mid x, \beta) = \text{Poisson}(y; \exp(\beta^\top x)) \]
\[= \exp(-\exp(\beta^\top x)) \exp(\beta^\top x)^y/y! \]
\[\propto \exp(y\beta^\top x - \exp(\beta^\top x)) \]

Log-likelihood (up to constants):

\[L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} \beta^\top x^{(i)} - \exp(\beta^\top x^{(i)}). \]
Example: Poisson

Poisson likelihood, exponential link:

\[p(y \mid x, \beta) = \text{Poisson}(y; \exp(\beta^\top x)) = \exp(- \exp(\beta^\top x)) \exp(\beta^\top x)^y / y! \propto \exp(y \beta^\top x - \exp(\beta^\top x)) \]

Log-likelihood (up to constants):

\[L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} \beta^\top x^{(i)} - \exp(\beta^\top x^{(i)}). \]

MLE (\(\nabla L = 0\)): predicted expectation equals empirical expectation:

\[\sum_{i=1}^{n} x^{(i)} y^{(i)} = \sum_{i=1}^{n} x^{(i)} \exp(\beta^\top x^{(i)}) \]
Count data: \(y^{(t)} \) is number of COVID-19 cases on day \(t \).

Assuming exponential growth, \(\mathbb{E}[y^{(t)}] = \exp(\beta_0 + \beta_1 t) \) (Poisson with exponential link function)

Can implement using \texttt{statsmodels} package.

[Jupyter demo]
Recall form of log-likelihood:

\[L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} \beta^\top x^{(i)} - \exp(\beta^\top x^{(i)}) \]

\[\nabla L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} x^{(i)} - \exp(\beta^\top x^{(i)}) x^{(i)} \]

\[\nabla^2 L(y \mid x, \beta) = -\sum_{i=1}^{n} \exp(\beta^\top x^{(i)}) (x^{(i)} x^{(i)})^\top \]
Recall form of log-likelihood:

$$L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} \beta^\top x^{(i)} - \exp(\beta^\top x^{(i)})$$

$$\nabla L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} x^{(i)} - \exp(\beta^\top x^{(i)}) x^{(i)}$$

$$\nabla^2 L(y \mid x, \beta) = -\sum_{i=1}^{n} \exp(\beta^\top x^{(i)}) (x^{(i)} x^{(i)})^\top$$

Confidence intervals based on Fisher information: $I(\beta) = -\nabla^2 L$

$$I(\beta) = \sum_{t=1}^{T} \exp(\beta_0 + \beta_1 t) \begin{bmatrix} 1 & t \\ t & t^2 \end{bmatrix}$$

Large whenever counts are large, independent of variation!
Misspecification Issues

Peril of assumptions: at the mercy of your model; \(\text{Var}(\text{Poisson}(\mu)) = \mu \)

Poisson distribution too narrow, leads to overconfident posterior

Common issue (esp. with count data): overdispersion
Misspecification Issues

Peril of assumptions: at the mercy of your model; $\text{Var}(\text{Poisson}(\mu)) = \mu$

Poisson distribution too narrow, leads to overconfident posterior

Common issue (esp. with count data): overdispersion

Typical fix: negative binomial distribution

$$p_{\mu, \alpha}(k) \propto \binom{k + \alpha - 1}{k} \left(\frac{\mu}{\mu + \alpha} \right)^k$$

Mean μ, overdispersion α (variance $\mu \cdot (1 + \mu / \alpha)$)
Negative binomial plots

[Credit: PyMC3 docs]
Negative binomial regression on COVID-19 data

Instead of $F(\mu) = \text{Poisson}(\mu)$, use $F_\alpha(\mu) = \text{NegativeBinomial}(\mu, \alpha)$

Standard ways of fitting α, i.e. MLE (or just set to a constant, but confidence intervals scale with α)

[Jupyter demo]

Medium post: https://medium.com/@jsteinhardt/the-growth-rate-of-covid-19-74944fc1d0f6
What other modeling assumptions might be violated for the COVID-19 data?