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Preface

This thesis provides an overview of recent results in robust estimation due to myself and my

collaborators. The key question is the following: given a dataset, some fraction of which consists of

arbitrary outliers, what can be learned about the non-outlying points? This is a classical question

going back at least to Tukey (1960). However, this question has recently received renewed interest for

a combination of reasons. First, many of the older results do not give meaningful error bounds in high

dimensions (for instance, the error often includes an implicit
√
d-factor in d dimensions). This calls

for a renewed study as machine learning increasingly works with high-dimensional models. Second,

in Charikar et al. (2017) we established connections between robust estimation and other problems

such as clustering and learning of stochastic block models. Currently, the best known results for

clustering mixtures of Gaussians are via these robust estimation techniques (Diakonikolas et al.,

2018b; Kothari and Steinhardt, 2018; Hopkins and Li, 2018). Finally, high-dimensional biological

datasets with structured outliers such as batch effects (Johnson et al., 2007; Leek et al., 2010),

together with security concerns for machine learning systems (Steinhardt et al., 2017), motivate the

study of robustness to worst-case outliers from an applied direction.

Recent research has shown encouraging progress on these questions, but the rapid progress has

led to an opaque literature. Most papers are complex in isolation, but are in fact comprised of

variations on a few key themes. This thesis aims to provide an accessible introduction to the area that

highlights the major techniques. In Chapter 1, we introduce the basic problem of robust estimation,

provide algorithms in the 1-dimensional case that foreshadow our later algorithms in high dimensions,

and explain the basic difficulty of the high-dimensional setting. In Chapters 2 and 3, we focus on

information-theoretic robustness—When is it possible (ignoring computational cost) to recover good

parameter estimates in the presence of outliers? The picture here is pleasingly simple, based on a

property called resilience that measures the influence of small sub-populations of points. Interestingly,

resilience allows us to recover an estimate of the mean even when the majority of the points are

outliers, assuming that we are allowed to output multiple guesses (the so-called list-decodable setting

first introduced by Balcan et al. (2008)). This fundamental fact underlies the connection between

robust learning and clustering, as we can think of each individual cluster as a population of “good”

points and then regard the points from the remaining clusters as outliers.
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In Chapter 4, we turn our attention to computationally efficient algorithms. Assuming the good

points have bounded covariance, we can recover an estimate of the mean with an error that grows only

with the largest eigenvalue of the covariance matrix (which is often independent of the dimension).

The basic idea is that outliers that shift the mean by more than a small amount must create directions

of large variation in the data, which can be detected by an eigendecomposition of the empirical

covariance. We show how to extend this mean estimation result to general M-estimators as long

as the gradient of the loss function has bounded covariance. Finally, in Chapter 5 we introduce an

alternate computational approach based on duality. Using this approach, we can find approximate

minimizers to a large family of saddle point problems in the presence of outliers. This allows us to

recover similar mean estimation results as in Chapter 4, with the advantage that the results hold

even when the majority of points are outliers. This yields algorithms for clustering that currently

give the best known bounds. However, the techniques in Chapters 4 and 5 are both under active

development. Both techniques are likely to enjoy stronger results even over the next year.

In summary, we will see a relatively complete information-theoretic perspective on robustness,

as well as two approaches for designing efficient algorithms. These approaches are presented in

general terms such that many key results in the field follow as simple corollaries, often requiring only

about a page of algebra to check the conditions. We hope that by exposing the structure behind the

arguments, we will enable new researchers to both apply and extend these results.
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machine learning group almost from scratch and consistently provided helpful feedback on talks and

papers. Tatsu Hashimoto, Michael Kim, Steve Mussmann, Arun Chaganty, Omer Reingold, Chris De

Sa, Steven Bach, Paris Siminelakis, Roy Frostig, Xinkun Nie, Sorathan Chaturapruek, Brian Axelrod,

and others diligently read paper drafts and acted as good citizens of the Stanford CS community.

Daniel Selsam, Tudor Achim, Michael Webb, and Sida Wang were kindred spirits who regularly

offered interesting perspectives on work and on life. Holden Karnofsky, Dario Amodei, Chris Olah,

and Nick Beckstead challenged my ideas and pushed me to be better. Aditi Raghunathan and Pang

Wei Koh showed extreme patience as my first junior collaborators, and multiplied my productivity in

the last years of graduate school. Philippe Rigollet asked probing questions that led to the concept of

vi



resilience. Pravesh Kothari and Tselil Schramm explained sum-of-squares programming to me many

times until I finally understood it; Dan Kane, Jerry Li, and Gautam Kamath showed similar patience

explaining their filtering algorithm. Thanks to these and other collaborators, including Zachary

Lipton, Alistair Stewart, Ilias Diakonikolas, Jonathan Huggins, and David Steurer for putting up with

me near deadlines. Alex Zhai, Paul Christiano, and Michael Cohen could well have been co-authors

but were too humble to accept credit. Outside of research, many friends supported me throughout

graduate school. Those not already mentioned above include Sindy Li, Nike Sun, Cathy Wu, Michela

Meister, Mikaela Provost, Tim Telleen-Lawton, Jared Kaplan, Chris Roberts, Marta Shocket, Jon

Losh, Michael Poon, Sasha Targ, Jeffrey Wu, Yang Hong, Rosa Cao, Yan Zhang, Danqi Chen, Will

Fithian, Joy Zhang, Hamsa Sridhar Bastani, Osbert Bastani, Armin Pourshafeie, and many others.

Finally, thanks to my family—my parents Suezette and Allan, my sister Emma, and my grandmother

Sophia, who is no longer with us but helped raise me and spent many evenings solving word puzzles.

I also owe gratitude to the National Science Foundation, the Future of Life Institute, the Open

Philanthropy Project, and especially the Fannie & John Hertz Foundation for funding my PhD. The

Hertz Foundation in particular went beyond this to also provide an inspiring community of Fellows

and alumni that led to many opportunities, ideas, and connections.

vii



Contents

Preface iv

Acknowledgments vi

1 Introduction 1

1.1 Formal Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Robust Mean Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 1-dimensional example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 First-pass assumption: bounded variance . . . . . . . . . . . . . . . . . . . . 3

1.2.3 An alternative procedure: comparing mean and variance . . . . . . . . . . . . 4

1.3 The Challenge: High Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Learning with Majority Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Connection: Agnostic Learning of Mixtures . . . . . . . . . . . . . . . . . . . 9

1.5 Beyond Mean Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Information-Theoretic Results 13

2.1 Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Resilience Implies Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 List-Decodable Learning with a Majority of Outliers . . . . . . . . . . . . . . 16

2.2 Examples of Resilient Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Basic Properties and Dual Norm Perspective . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Some Initial Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Efficient Algorithms for Finite Norms . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Corollary: O( 1
α ) Outputs Suffice . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Bibliographic Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



3 Finite-Sample Concentration and Resilient Cores 26

3.1 Finite-Sample Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Finite-Sample Concentration: Proof of the Main Result . . . . . . . . . . . . . . . . 28

3.3 Stochastic Block Model and Kesten-Stigum Threshold . . . . . . . . . . . . . . . . . 30

3.4 Resilient Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Bibliographic Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Robust Mean Estimation via Moments and Eigenvectors 36

4.1 `2 mean estimation via eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Moment estimation yields robust mean estimation . . . . . . . . . . . . . . . . . . . 38

4.3 Generalization to robust stochastic optimization . . . . . . . . . . . . . . . . . . . . 39

4.4 Bibliographic Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Robust Estimation via Duality 43

5.1 A Family of Saddle Point Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Robustly Approximating Saddle Point Problems . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Applications of Theorem 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.2 Matrix Reconstruction (Example 5.1) . . . . . . . . . . . . . . . . . . . . . . 48

5.2.3 Low-Rank Approximation (Example 5.2) . . . . . . . . . . . . . . . . . . . . 48

5.3 Better Approximations via Dual Coupling Inequalities . . . . . . . . . . . . . . . . . 49

5.3.1 Application: Robust Stochastic Optimization . . . . . . . . . . . . . . . . . . 52

5.3.2 Consequence for Mean Estimation . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.3 Better Bounds via Sum-of-Squares Relaxations . . . . . . . . . . . . . . . . . 55

5.4 Bibliographic Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Discussion 60

A Proofs for Chapter 1 62

A.1 Proof of Lemma 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2 Proof of Lemma 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B Proofs for Chapter 2 64

B.1 Proof of Lemma 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.2 Proof of Lemma 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.3 Proof of Proposition 2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.4 Proof of Lemma 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ix



B.5 Proof of Lemma 2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.6 Proof of Lemma 2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.7 Proof of Lemma 2.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

C Proofs for Chapter 3 69

C.1 Proof of Lemma 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

D Proofs for Chapter 5 71

D.1 Proof of (5.39) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

D.2 Bounding ‖µ̂− µ‖2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

x



List of Algorithms

1 TrimmedMean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Filter1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 FindResilientSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 FilterL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 FilterNorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 RobustStochasticOpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 DualFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 RegularizedDualFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi



List of Figures

1.1 Two datasets with outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Histogram of a dataset with outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Intuition behind Algorithm 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Gaussian mean estimation example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Three clusters, two of which consist of outliers. . . . . . . . . . . . . . . . . . . . . . 7

1.6 Illustration of the m+ 1 intervals in Theorem 1.8. . . . . . . . . . . . . . . . . . . . 8

1.7 Reduction from learning mixtures to list-decodable robust learning. . . . . . . . . . . 9

2.1 Worst-case shift in mean for an isotropic Gaussian. . . . . . . . . . . . . . . . . . . . 14

2.2 Resilient and non-resilient set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Large resilient sets have large overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Covering by resilient sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Optimal configuration based on dual unit vector. . . . . . . . . . . . . . . . . . . . . 20

3.1 Decomposition into bulk and tail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Illustration of the semi-random stochastic block model. . . . . . . . . . . . . . . . . . 31

xii



Chapter 1

Introduction

Our goal is to understand learning in the presence of outliers. As an example, consider the following

two datasets:

Figure 1.1: Two datasets with outliers.

For the regression dataset (left), the two outliers indicated in red cause the least squares line to

differ from a more robust trend line that ignores these outliers. Similarly, for the mean estimation

dataset (right), the red outliers skew the empirical mean.

The present work concerns methods whose worst-case performance in the presence of arbitrary

outliers is good. We will see how to design and analyze such methods. In addition to worst-case

performance, a large literature also studies average-case performance under statistical assumptions

on the outliers. However, we do not study this scenario here.

1.1 Formal Setting

To formalize the notion of outliers, consider the following learning setting:

1



CHAPTER 1. INTRODUCTION 2

• We observe n data points x1, . . . , xn.

• An unknown subset S of αn points are “good” (e.g. drawn from some “nice” distribution p∗).

• The remaining (1− α)n points are arbitrary outliers.

In particular, the outliers could be chosen by an adversary that has full knowledge of the good points

and of whatever learning algorithm we choose to use.

In many settings, the fraction α of good data will be close to 1, in which case we often use the

alternative notation ε = 1− α to refer to the fraction of outliers.

Typically, we are interested in approximately estimating some statistic of p∗, such as its mean,

its best fit line (in the case of regression), a separating hyperplane (in the case of classification), and

so on. We will first focus on mean estimation for simplicity, and later discuss how to generalize to

more complex learning problems.

1.2 Robust Mean Estimation

In robust mean estimation, the n data points x1, . . . , xn lie in Rd, and the αn good points are drawn

from a distribution p∗ with some unknown mean µ. Our goal is to output some estimate µ̂ of µ such

that ‖µ̂− µ‖ is small in a given norm ‖ · ‖.

1.2.1 1-dimensional example

Consider the following histogram of a 1-dimensional dataset, where the height of each bar represents

the number of points with a given value:

Figure 1.2: Histogram of a dataset with outliers.

Are the red points outliers? Or part of the real data? Depending on the conclusion, the estimated

mean could vary substantially. Without further assumptions on the data-generating distribution p∗,

we cannot rule out either case. This brings us to an important principle:

With no assumptions on the distribution p∗, robust estimation is impossible.
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In particular, we must make assumptions that are strong enough to reject sufficiently extreme

points as outliers, or else even a small fraction of such points can dominate the estimate of the mean.

1.2.2 First-pass assumption: bounded variance

We now consider one possible assumption that allows us to estimate the mean in the presence of

outliers. For now, take p∗ to be the empirical distribution over the (1− ε)n good points, so that we

can ignore issues of finite-sample concentration (we will attend to these issues in Chapter 3).

Suppose that p∗ is a distribution on the real line R, with bounded variance in the sense that

Ex∼p∗ [(x−µ)2] ≤ σ2, where µ is the (unknown) true mean of p∗. Then, given an ε-fraction of outliers,

we can estimate µ to within error O(σ
√
ε). Indeed, consider the following procedure:

Algorithm 1 TrimmedMean

1: Remove the smallest and largest 2εn points (so 4εn points are removed in total).
2: Return the mean of the remaining points.

In the remainder of this subsection we will show that this algorithm succeeds at estimating the mean.

Analyzing Algorithm 1. We will make use of a strengthened version of Chebyshev’s inequality,

which we recall here (see Section A.1 for a proof):

Lemma 1.1. Suppose that p has mean µ and variance σ2. Then, PX∼p[X ≥ µ + σ/
√
δ] ≤ δ.

Moreover, if E is any event with probability at least δ, then |EX∼p[X | E]− µ| ≤ σ
√

2(1−δ)
δ .

The first part, which is the standard Chebyshev inequality, says that it is unlikely for a point to

be more than a few standard deviations away from µ. The second part says that any large population

of points must have a mean close to µ. This second property, which is called resilience, is central to

robust estimation, and will be studied in more detail in Chapter 2.

With Lemma 1.1 in hand, we can prove the following fact about Algorithm 1:

Proposition 1.2. Assume the fraction ε of outliers is at most 1
8 . Then the output µ̂ of Algorithm 1

satisfies |µ̂− µ| ≤ 8σ
√
ε.

Proof. First note that all outliers which exceed the ε-quantile of p∗ are removed by Algorithm 1.

Therefore, all non-removed outliers lie within σ√
ε

of the mean µ by Chebyshev’s inequality.

On the other hand, we remove at most 4εn good points (since we remove 4εn points in total),

which accounts for at most a 4ε
1−ε fraction of the good points. Applying Lemma 1.1 with δ = 1− 4ε

1−ε ,

the mean of the remaining good points lies within σ
√

8ε
1−5ε of µ.

Now let ε′ be the fraction of remaining points which are bad, and note that ε′ ≤ ε
1−4ε . The mean

of all the remaining points differs from µ by at most ε′ · σ
√

1
ε + (1− ε′) · σ

√
8ε

1−5ε , which is at most

4
√
ε

1−4εσ. This is in turn at most 8σ
√
ε assuming that ε ≤ 1

8 .



CHAPTER 1. INTRODUCTION 4

Remark 1.3. The key fact driving the proof of Proposition 1.2 is that any (1− ε)-fraction of the

good points has mean at most O(σ
√
ε) away from the true mean due to Chebyshev’s inequality

(Lemma 1.1), which makes use of the bound σ2 on the variance. Any other bound on the deviation

from the mean would yield an analogous result. For instance, if p∗ has bounded kth moment, then

the O(σ
√
ε) in Lemma 1.1 can be improved to O(σ̃ε1−1/k), where σ̃k is a bound on the kth moment;

in this case Algorithm 1 will estimate µ with a correspondingly improved error of O(σ̃ε1−1/k).

1.2.3 An alternative procedure: comparing mean and variance

We next analyze a more complicated procedure that will generalize to yield efficient algorithms

beyond the one-dimensional setting. For instance, many of the efficient algorithms discussed in

Chapter 4 follow a similar template.

This alternative procedure compares the variance of the data to some known upper bound σ2

on what the variance “should be”. If the variance is not too large, it outputs the empirical mean;

otherwise, it down-weights points that are far away from the mean and re-estimates the variance.

Algorithm 2 Filter1D

1: Initialize weights c1, . . . , cn = 1.

2: Compute the empirical mean µ̂c of the data, µ̂c
def
= (

∑n
i=1 cixi)/(

∑n
i=1 ci).

3: Compute the empirical variance σ̂2
c

def
=
∑n
i=1 ciτi/

∑n
i=1 ci, where τi = (xi − µ̂c)2.

4: If σ̂2
c ≤ 16σ2, output µ̂c.

5: Otherwise, update ci ← ci · (1− τi/τmax), where τmax = maxi τi.
6: Go back to line 2.

The intuition is as follows: if the empirical variance σ̂2
c is much larger than the variance σ2 of the

good data, then the bad points must on average be very far away from the empirical mean (i.e., τi

must be large on average). This is depicted in the diagram below:

σ2

σ̂2
c

bad datagood data

(distance ≈ σ̂2
c/ε)

Figure 1.3: Intuition behind Algorithm 2. Because there is only an ε-fraction of bad data, it must lie
far away to increase the variance by a constant factor.
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The variables τi help to formalize this; one can calculate that

1

|S|
∑
i∈S

ciτi ≤
1

|S|
∑
i∈S

(xi − µ̂c)2 = σ2 + (µ− µ̂c)2, (1.1)

so that if σ2 � σ̂2
c then most of the contribution to the overall sum

∑n
i=1 ciτi must come from the

ε-fraction of bad points. The main complication is that the mean µ̂c may differ from the true mean

µ of the good points, which leads to the (µ− µ̂c)2 term in (1.1).

To bound (µ− µ̂c)2, we will inductively assume that the following invariant holds:

∑
i∈S

(1− ci) ≤
1− ε

2

∑
i 6∈S

(1− ci) (I)

The invariant (I) posits that the amount of mass removed from the good points is smaller than that

removed from the bad points. This ensures that the weights ci are biased towards the good points,

which intuitively should imply that µ̂c is close to µ. We formalize this with Lemma 1.4:

Lemma 1.4. Suppose that the invariant (I) holds. Then |µ− µ̂c| ≤ σ
√

2ε
2−ε + σ̂c

√
2ε
1−ε .

Suppose further that σ̂2
c ≥ 16σ2 and ε ≤ 1

12 . Then we have

∑
i∈S

ciτi ≤
1− ε

3
σ̂2
cn, while

∑
i6∈S

ciτi ≥
2

3
σ̂2
cn. (1.2)

The second part of Lemma 1.4 states that τi is large across the bad points and small across

the good points; in particular, the sum of ciτi across [n]\S is more than twice as large as the sum

across S. Note that this means the average of ciτi across [n]\S is roughly 2
ε times larger than the

average across S (since there are only an ε-fraction of bad points). The proof of Lemma 1.4 consists

of straightforward but tedious calculation and is deferred to Section A.2.

Intuitively, Lemma 1.4 should give us the power to separate good points from bad points, by

removing points for which τi is large. The difficulty is that Lemma 1.4 only controls the τi on average

rather than pointwise. By appropriately downweighting (rather than removing) points as in line 5 of

Algorithm 2, we can make use of this “on-average” information. The following lemma formalizes this,

asserting that we remove bad points much more quickly than good points.

Lemma 1.5. Suppose that τi is any quantity such that
∑
i∈S ciτi ≤

1−ε
2

∑
i6∈S ciτi. Then, the update

ci ← ci(1− τi/τmax) in Algorithm 2 preserves the invariant (I), meaning that if (I) holds before the

update, it will continue to hold after the update.

We prove Lemma 1.5 later in this section. The remaining analysis of Algorithm 2 now proceeds

by induction, as Lemma 1.5 provides the necessary inductive step. We will show the following:

Proposition 1.6. Suppose that ε ≤ 1
12 and that the variance of the good points is at most σ2. Then,

the output µ̂c of Algorithm 2 satisfies |µ̂c − µ| ≤ O(σ
√
ε).
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Proof. Our inductive hypothesis is the invariant (I). This hold initially since
∑
i∈S(1 − ci) =∑

i 6∈S(1− ci) = 0. Turning to the inductive step, until we output µ̂c we have σ̂2
c ≥ 16σ2, so we can

apply Lemma 1.4. In particular, the condition of Lemma 1.5 holds due to the conclusion (1.2) of

Lemma 1.4. Therefore, the invariant (I) is preserved, which completes the induction.

To conclude, note that σ̂c ≤ 4σ whenever we output µ̂c. Apply Lemma 1.4 once more to obtain

|µ̂c − µ| ≤ σ
√

2ε
2−ε + σ̂c

√
2ε
1−ε = O(σ

√
ε), as was to be shown.

We end this subsection by proving Lemma 1.5.

Proof of Lemma 1.5. Let c′i = ci · (1− τi/τmax). Then for any set I we have

∑
i∈I

(1− c′i) =
∑
i∈I

(1− ci) +
∑
i∈I

(ci − c′i) (1.3)

=
∑
i∈I

(1− ci) +
1

τmax

∑
i∈I

ciτi. (1.4)

Applying this with I = S and I = [n]\S, we note that
∑
i∈S(1 − ci) ≤ 1−ε

2

∑
i 6∈S(1 − ci) by the

assumed invariant (I), while
∑
i∈S ciτi ≤

1−ε
2

∑
i 6∈S ciτi by the assumption of the lemma. Therefore,

the invariant (I) continues to hold for the c′i.

1.3 The Challenge: High Dimensions

In the previous section, we saw two procedures for robustly estimating the mean of a 1-dimensional

dataset, assuming the true data had bounded variance. These procedures work by removing data

points that are too far away from the mean, and then returning the mean of the remaining points.

It is tempting to apply this same idea in higher dimensions—for instance, removing points that

are far away from the mean in `2-distance. Unfortunately, this incurs large error in high dimensions.

To see why, consider the following simplified example. The distribution p∗ over the true data is an

isotropic Gaussian N (µ, I), with unknown mean µ and independent variance 1 in every coordinate.

In this case, the typical distance ‖xi−µ‖2 of a sample xi from the mean µ is roughly
√
d, since there

are d coordinates and xi differs from µ by roughly 1 in every coordinate. (In fact, ‖xi − µ‖2 can be

shown to concentrate around
√
d with high probability.) This means that the outliers can lie at a

distance
√
d from µ without being detected, thus shifting the mean by Θ(ε

√
d); Figure 1.4 depicts

this. Therefore, filtering based on `2 distance will necessarily incur an error of at least ε
√
d. This

dimension-dependent
√
d factor often renders bounds meaningless.

In fact, the situation is even worse; not only are the bad points no further from the mean than

the good points in `2-distance, they actually have the same probability density under the true

data-generating distribution N (µ, I). This means that there is no procedure that measures each

point in isolation and can avoid the
√
d factor in the error.
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Figure 1.4: The outliers can lie at distance
√
d without being detected, skewing the mean by ε

√
d.

This leads us to an important take-away: In high dimensions, outliers can substantially perturb

the mean while individually looking innocuous. To handle this, we will instead need to analyze entire

populations of outliers at once. We will see in later chapters that this is possible, and that we can

avoid dimension-dependent error through more nuanced strategies.

1.4 Learning with Majority Outliers

In robust statistics, the breakdown point refers to the maximum fraction of outliers that a procedure

can tolerate before incurring arbitrarily high error. For instance, our analysis of TrimmedMean and

Filter1D established that they have breakdown points of at least ε = 1
8 and 1

12 , respectively.

It would appear that the best possible breakdown point is ε = 1
2 . Indeed, beyond this point a

majority of the data are outliers, so it is difficult to distinguish the good data from potential outliers.

For instance, if ε = 1
3 we might observe the following dataset consisting of 3 identical clusters:

Figure 1.5: Three clusters, two of which consist of outliers.

Donoho (1982) formalizes this argument and shows that no translation-equivariant estimator can

achieve a breakdown point better than 1
2 . However, we can surpass this barrier if we change the

model slightly to account for ambiguities such as the one depicted above. For instance, we can adopt
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the list-decodable learning model (Balcan et al., 2008), which allows us to output multiple candidate

answers:

Definition 1.7 (List-decodable model). In the list-decodable model, we are allowed to output m

estimates θ̂1, . . . , θ̂m of a target parameter θ∗, and succeed if at least one of the θ̂j is close to θ∗.

In the example from Figure 1.5, we can output 3 candidate means (the 3 green x’s) and be sure

that at least one is close to the true mean. A fuller treatment of the list-decodable model will appear

in Chapter 2. For now, we will show that in one dimension, the same bounded variance assumption

from before is sufficient to enable robust learning.

More specifically, assume that an α-fraction of the data is good data that has variance at most σ2

around its mean µ. Before, we took α to be 1− ε to emphasize that α ≈ 1, but now we are interested

in the case where α is small and potentially less than 1
2 . We have the following result:

Theorem 1.8. Consider 1-dimensional data lying on the real line. Suppose that an α-fraction of the

data is good, while the remaining data consists of arbitrary outliers. Also suppose that the good data

has variance at most σ2 around its mean µ. Then it is possible to output m ≤ b 1
α(1−δ)c candidate

means µ̂1, . . . , µ̂m such that minmj=1 |µ̂j − µ| = O(σ/
√
δ).

Note that the 1
α factor in the bound on m is optimal, since an adversary can always create 1

α

identical clusters with different means.

Proof of Theorem 1.8. Let a and b denote the δ/2 and 1−δ/2 quantiles of the good data, respectively.

By Lemma 1.1 we know that a and b are both within 2σ/
√
δ of µ. Now split the data into

m+ 1 = d 1
α(1−δ)e intervals each containing at least a α(1− δ)-fraction of the points. Let µ̂1, . . . , µ̂m

be the m boundaries of these m+ 1 intervals:

µ̂1 µ̂2 µ̂3 µ̂4

a b

µ

≥ α(1 − δ)n points

Figure 1.6: Illustration of the m+ 1 intervals and the m candidate means µ̂j .

At least one of these boundaries must lie between a and b (as otherwise a and b would lie in the

same interval, which is impossible because there are α(1− δ) points between a and b). Therefore,

one of the µ̂j lies between a and b, and in particular is within O(σ/
√
δ) of µ, as claimed.

Remark 1.9. The 1/
√
δ dependence can be improved to δ−1/k if instead of bounded variance we

have bounded kth moments. This roughly reflects that events of probability δ can differ from the
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true mean by up to δ−1/k. In contrast, in Proposition 1.2 we cared about events of probability 1− δ,
which can differ from the true mean by δ1−1/k (see Remark 1.3).

Remark 1.10. The lack of dependence on α is specific to the 1-dimensional setting. In higher

dimensions the best error guarantee assuming bounded covariance is O(1/
√
α) (Charikar et al., 2017),

which has a matching lower bound proved in Proposition 5.4 of Diakonikolas et al. (2018b).

1.4.1 Connection: Agnostic Learning of Mixtures

Theorem 1.8 is interesting because it shows that there are procedures with breakdown points better

than 1
2 (and indeed arbitrarily close to 1) if we redefine the problem via the list-decodable model.

Beyond its conceptual interest, list-decoding has important implications for the problem of learning

mixture models.

Classically, the problem of learning mixtures is the following: there are k distributions p∗1, . . .,

p∗k, and we observe samples from w1p
∗
1 + · · ·+ wkp

∗
k, where the wj are weights summing to 1. The

goal is to disentangle the different mixture components and estimate statistics of each of the p∗j . For

instance, a common assumption is that each of the p∗j is a Gaussian, and the goal is to estimate each

of their means and variances.

List-decodable learning provides one way of learning mixtures; by setting α = minkj=1 wj , we can

think of each of the mixture components as the “good” data, whence Theorem 1.8 guarantees that

the means of each of the mixture components is close to at least one of the µ̂j . This reduction is

illustrated below:

Figure 1.7: Reduction from learning mixtures to list-decodable robust learning.

The connection between learning mixtures and robust learning becomes most interesting when

we move beyond the 1-dimensional case. For instance, clustering is NP-hard even in 2 dimensions

(Mahajan et al., 2009), but generalizations of Theorem 1.8 will yield algorithms for efficient clustering

in high dimensions under appropriate assumptions. Moreover, these algorithms work in the robust

agnostic setting where the underlying model may be mis-specified (e.g. the data may not actually be

Gaussian) and where a large fraction of outlier points do not come from any mixture component.
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1.5 Beyond Mean Estimation

We have mainly focused on mean estimation so far, but robust learning applies to many other

settings as well (some of which will be discussed in the sequel). For instance, we also discussed robust

clustering above, and will later discuss stochastic block models, which are related to clustering on

graphs. We can also consider robust classification, where some small fraction of data are arbitrarily

misclassified. Another problem is item frequency estimation, where we observe samples from a discrete

distribution π and wish to determine which items are most frequent. Finally, we can consider general

M-estimation or stochastic optimization, where each observation is a (typically convex) loss function

corresponding to an individual data point, and the goal is to find an approximate minimizer of the

average loss over the good points. We will treat many of these in detail in the sequel.

1.6 History

Robust estimation was first systematically studied by Tukey and his students (Tukey, 1960), with

other contributions by Box (1953), Huber (1964), and Hampel (1968). There were even earlier

investigations going back to at least Newcomb (1886). Huber and Ronchetti (2009) and Hampel et al.

(2011) provide two recent surveys. These investigations study properties including breakdown point

(introduced in Section 1.4) and influence (the extent to which a single datum affects the answer),

but were largely focused on low or moderate rather than high dimensions. The learning theory

community has also studied learning with errors (Kearns and Li, 1993), although often under more

restrictive assumptions on the outliers.

High-dimensional robust estimation was studied by Maronna (1976), Donoho (1982), and Donoho

and Gasko (1992) (among others). These works noted obstacles to obtaining robust estimates in high

dimensions, while Donoho (1982) analyzed estimators with favorable breakdown points, including the

Tukey median (Tukey, 1975). Despite a good breakdown point, most of these estimators still incur

error growing with the dimension. An exception is the Tukey median, which has been characterized

as an optimally robust estimator, but this is imprecise–it overlooks the fact that the Tukey median

is only consistent under strong symmetry assumptions, and is NP-hard to compute (Johnson and

Preparata, 1978). Diakonikolas et al. (2016) show that a number of natural approaches fail in high

dimensions, and provide a higher-dimensional analog of the Filter1D procedure, which we will cover

in later chapters.

The list-decodable learning model was first introduced in Balcan et al. (2008) and later studied by

others including Balcan et al. (2009) and Kushagra et al. (2016). It was first applied in the context

of robust learning by Charikar et al. (2017), which built on earlier work in Steinhardt et al. (2016).
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1.7 Exercises

Robust estimators under higher moment bounds

1. [1] Show that if the kth moment Ex∼p∗ [|x − µ|k]1/k is bounded by σk, then the error of the

TrimmedMean procedure is O(σkε
1−1/k).

2. [1] Suppose that p∗ is sub-Gaussian, meaning that Ex∼p∗ [exp(λ(x− µ))] ≤ exp( 1
2λ

2σ2) for all

λ ∈ R. Show that the error of TrimmedMean is O(σε
√

log(2/ε)).

3. [1+] Suppose that p∗ has bounded 4th moments: Ex∼p∗ [(x− µ)4]1/4 ≤ σ4. Devise a variant of

Filter1D that achieves error O(σ4ε
3/4).

Better breakdown point via resilience

Call a set T ⊆ R of points (σ, ε)-resilient if every subset of (1− ε)|T | of the points has mean within σ

of the overall mean.

4. [1+] If a set T has variance bounded by σ2, show that it is (O(σ
√
ε), ε)-resilient for ε < 1

2 .

5. [2+] Let ε < 1
2 . Suppose that we are given a set T of (1−ε)n good points that is (σ, ε

1−ε )-resilient

with mean µ, together with εn arbitrary outliers. Let T ′ be any (σ, ε
1−ε )-resilient subset of the

n points with |T ′| ≥ (1− ε)n. Show that the mean of T ′ is within 2σ of µ. (Hint: consider the

mean of T ∩ T ′.)

Median and Tukey median

We say that p∗ is (s, ε)-stable if Px∼p∗ [x ≥ µ + s] < 1
2 − ε and Px∼p∗ [x ≤ µ − s] < 1

2 − ε. Let s(ε)

denote the minimum s for which p∗ is (s, ε)-stable (or the infimum if the minimum does not exist).

6. [1] Show that s(0) = 0 if and only if the median is unique and equals the mean.

7. [1] Show that the median estimates the mean with error at most s( ε
2−2ε ) in the presence of an

ε-fraction of outliers.

8. [2] Show that a Gaussian with variance σ2 is (O(σε), ε)-stable for ε ≤ 1
4 .

9. [2] Show that if a distribution is (s, ε)-stable, then the empirical distribution of n i.i.d. samples

from p∗ will be (s, ε2 )-stable with probability at least 1− 2 exp(−cεn) for some c > 0.

10. [3] Call a distribution on Rd (s, ε)-stable if it is (s, ε)-stable when projected onto any unit vector.

Show that if a distribution on Rd is (s, ε)-stable, then the empirical distribution on n samples

is (2s, ε2 −O( dn ))-stable with probability at least 1− 2 exp(−cεn).

Given data x1, . . . , xn ∈ R, the depth of a point xi is the minimum of the number of points to the

left and to the right of xi. For x1, . . . , xn ∈ Rd, the depth of a point xi is the minimum depth along

all 1-dimensional projections. The Tukey median is the point with maximum depth.
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11. [1+] Let S ⊆ {x1, . . . , xn} be a set of (1− ε)n “good” points. Show that if there is a point of

depth 1−δ
2 |S| in S, then there is a point of depth 1−δ−ε

2 n in the overall data.

12. [1+] Suppose that the good data are (s, c · (ε+ δ))-stable in every direction for some sufficiently

large constant c. Under the same assumptions as the previous problem, show that the Tukey

median estimates the mean to `2-error s.

13. [2+] Show that given (1− ε)n samples from N (µ, σ2I), and an ε-fraction of outliers, the Tukey

median estimates µ with `2-error O(σε) with high probability, assuming that ε is sufficiently

small and n� d
ε . (Hint: use the results of the previous exercises.)

Breaking common estimators

14. [2+] Given data points x1, . . . , xn ∈ Rd, the geometric median is the estimator µ̂ that minimizes∑n
i=1 ‖xi − µ̂‖2. Suppose that a (1 − ε)-fraction of points are drawn from N (µ, I), while

the remaining points are arbitrary outliers. Show that the geometric median can have error

‖µ̂− µ‖2 = Ω(ε
√
d).

15. [2] Consider data points (x1, y1), . . . , (xn, yn) ∈ Rd × R. A (1− ε)-fraction of good points are

generated as follows: x ∼ N (0, I), and y = 〈w∗, x〉+ v, where v ∼ N (0, 1) and w∗ ∈ Rd is a

parameter we wish to estimate. The remaining points are arbitrary outliers.

Consider an estimator ŵ that first discards all points i for which ‖xi‖2 > 2
√
d, and then runs least

squares regression on the remaining points. Show that ŵ can have error ‖ŵ − w∗‖2 = Ω(ε
√
d).



Chapter 2

Information-Theoretic Results

In the previous chapter we mainly focused on robust estimation in one dimension, while discussing

some difficulties in obtaining good estimates in higher dimensions. In this chapter we will handle

the higher-dimensional setting. Our results will be information-theoretic in nature, with efficient

algorithms presented in Chapters 4 and 5. As before, we will restrict out attention to mean estimation

in some norm. The exposition in this chapter closely follows that in Steinhardt et al. (2018).

2.1 Resilience

The key to our results is the property of resilience. A set S is resilient if the the mean of every large

subset of S is close to the mean of all of S. More formally, for a norm ‖ · ‖, resilience is defined as

follows:

Definition 2.1 (Resilience). A set of points {xi}i∈S lying in Rd is (σ, ε)-resilient in a norm ‖ · ‖ if,

for all subsets T ⊆ S of size at least (1− ε)|S|,∥∥∥ 1

|T |
∑
i∈T

(xi − µ)
∥∥∥ ≤ σ, (2.1)

where µ is the mean of S. More generally, a distribution p is said to be (σ, ε)-resilient if ‖E[x− µ |
E]‖ ≤ σ for every event E of probability at least 1− ε.

As the most basic example, an isotropic Gaussian is resilient:

Example 2.2 (Isotropic Gaussian). Let p = N (µ, I) be an isotropic Gaussian distribution. Then p

is (O(ε
√

log(2/ε)), ε)-resilient in the `2-norm.

Proof. Let µ̂ be the mean of the worst-case event E (i.e. the event E with P[E] ≥ 1− ε for which

‖µ̂− µ‖2 is largest). By rotational symmetry of p, we can assume that µ̂− µ lies in the direction of

13
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the vector (1, 0, 0, . . .). But then it is clear that the worst-case E consists of taking the 1− ε quantile

of points whose first coordinate is largest, as shown below:

µ µ̂

E

Figure 2.1: Worst-case shift in mean for an isotropic Gaussian.

Resilience thus reduces to the one-dimensional case and the question is how much the mean of a

Gaussian shifts upon removing its ε-quantile of smallest values. Simple calculation reveals this to be

O(ε
√

log(2/ε)), yielding the claimed result.

More generally, if p has kth moments bounded by σk, then p is (O(σkε
1−1/k), ε)-resilient (see

Example 2.7). We detail more examples where Definition 2.1 is satisfied in Section 2.2 and Section 3.1.

As additional intuition for what resilient sets look like, consider the following diagram:

Figure 2.2: Resilient set (left) and non-resilient set (right).

The set on the left is resilient because all of the points are clustered around the mean, and hence

removing any small population of points will not shift the mean by much. In contrast, the set on the

right is not resilient (with any small parameter σ) due to the population of red points that are all far

from the mean.

A key fact is that even in high dimensions, distributions can be resilient with a parameter σ that

does not grow with the dimension, as in Example 2.2. This is despite the fact that (as shown in

Section 1.3) all of the individual points are at distance
√
d from the mean. Even though individual

points are far away from the mean, they are far away in different directions and so the behavior

of populations of points is substantially different than individual points. This is what allows us to

circumvent the
√
d barrier from Section 1.3—as we will see in the following subsection, (σ, ε)-resilience

is sufficient to enable robust estimation with error O(σ).
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2.1.1 Resilience Implies Robustness

Let S̃ be a set of data corrupted by outliers. Assuming that a subset S ⊆ S̃ of good points is

(σ, ε)-resilient, we will see that there is a simple strategy for approximately recovering the mean of

S—find any large (σ, ε)-resilient subset S′ of the corrupted set S̃, and output the mean of S′. Thus,

the mere existence of a resilient set S means that all resilient sets must have similar means.

The reason why is the following—since S′ and S are both large, they must have large intersection,

and so they must have similar means due to the condition (2.1) applied with T = S ∩ S′. This

argument is illustrated in Figure 2.3 below. We establish the claim formally in Proposition 2.3.

Figure 2.3: Large resilient sets have large overlap, and hence similar means.

Pleasingly, resilience reduces the question of handling outliers to a purely algorithmic question—

that of finding any large resilient set. Rather than wondering whether it is even information-

theoretically possible to estimate µ, we can instead focus on efficiently finding resilient subsets of S̃

(which is the purview of Chapters 4 and 5).

We next formalize the above argument to show that resilience is indeed information-theoretically

sufficient for robust recovery of the mean µ. In what follows, we use σ∗(ε) to denote the smallest σ

such that S is (σ, ε)-resilient.

Proposition 2.3. Suppose that S̃ = {x1, . . . , xn} contains a set S of size (1− ε)n that is resilient

with mean µ (where S and µ are both unknown). Then if ε < 1
2 , it is possible to recover a µ̂ such

that ‖µ̂− µ‖ ≤ 2σ∗( ε
1−ε ).

In other words, robustness to an ε fraction of outliers depends on resilience to a ε
1−ε fraction of

deletions. Thus, we can estimate µ in the presence of outliers as long as σ∗( ε
1−ε ) is small.

Proof of Proposition 2.3. We prove Proposition 2.3 via a constructive (albeit exponential-time)

algorithm. To prove the first part, suppose that the true set S is (σ, ε
1−ε )-resilient with mean µ, and

let S′ be any set of size (1− ε)n that is (σ, ε
1−ε )-resilient (with some potentially different mean µ′).

We claim that µ′ is sufficiently close to µ.

Indeed, let T = S ∩ S′, which by the pigeonhole principle has size at least (1− 2ε)n = 1−2ε
1−ε |S| =
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(1− ε
1−ε )|S|. Therefore, by the definition of resilience,∥∥∥ 1

|T |
∑
i∈T (xi − µ)

∥∥∥ ≤ σ. (2.2)

Thus, if we let µS∩S′ denote the mean of S∩S′, we have ‖µ−µS∩S′‖ ≤ σ. But by the same argument,

‖µ′ − µS∩S′‖ ≤ σ as well. By the triangle inequality, ‖µ− µ′‖ ≤ 2σ, which completes the proof.

2.1.2 List-Decodable Learning with a Majority of Outliers

In Section 1.4, we saw that it is possible to estimate the mean even when there are a majority of

outliers, as long as we measure success in the list-decodable model, where we can output m (typically

O(1/α)) candidate answers. Here we generalize this observation to higher dimensions, and show that

resilience is sufficient for learning in the list-decodable model.

The basic intuition is that we can cover the corrupted set S̃ by resilient sets S′1, . . . , S
′
2/α of size

α
2 n. Then by the pigeonhole principle, the resilient set S must have large overlap with at least one of

the S′, and hence have similar mean. This is captured in Figure 2.4 below:

Figure 2.4: If we cover S̃ by resilient sets, at least one of the sets S′ has large intersection with S.

The main difference is that S and S′ may have relatively small overlap (in a roughly α-fraction of

elements). We thus need to care about resilience when the subset T is small compared to S. The

following lemma relates resilience on large sets to resilience on small sets:

Lemma 2.4. For any 0 < ε < 1, a distribution/set is (σ, ε)-resilient if and only if it is ( 1−εε σ, 1− ε)-
resilient.

This result follows directly from the definition and is proved in Section B.1. With Lemma 2.4 in

hand, we can prove an analog of Proposition 2.3 in the list-decoding model:

Proposition 2.5. As in Proposition 2.3, suppose that a set S̃ = {x1, . . . , xn} contains a resilient

set S with mean µ. Then if |S| ≥ αn (even if α < 1
2), it is possible to output m ≤ 2

α estimates

µ̂1, . . . , µ̂m such that ‖µ̂j − µ‖ ≤ 8
ασ
∗(α4 ) for some j.

Proof of Proposition 2.5. Given Lemma 2.4, the proof of Proposition 2.5 is similar to Proposition 2.3,

but requires us to consider multiple resilient sets Si rather than a single S′. Suppose S is (σ, α4 )-

resilient around µ—and thus also ( 4
ασ, 1 −

α
4 )-resilient by Lemma 2.4—and let S1, . . . , Sm be a
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maximal collection of subsets of [n] such that:

1. |Sj | ≥ α
2 n for all j.

2. Sj is ( 4
ασ, 1−

α
2 )-resilient (with mean µj).

3. Sj ∩ Sj′ = ∅ for all j 6= j′.

Clearly m ≤ 2
α . We claim that S has large intersection with at least one of the Sj and hence

µj is close to µ. By maximality of the collection {Sj}mj=1, it must be that S0 = S\(S1 ∪ · · · ∪ Sm)

cannot be added to the collection. First suppose that |S0| ≥ α
2 n. Then S0 is ( 4

ασ, 1−
α
2 )-resilient

(because any subset of α
2 |S0| points in S0 is a subset of at least α

4 |S| points in S). This contradicts

the maximality of {Sj}mj=1, so we must have |S0| < α
2 n.

Now, this implies that |S ∩ (S1 ∪ · · · ∪Sm)| ≥ α
2 n, so by pigeonhole we must have |S ∩Sj | ≥ α

2 |Sj |
for some j. Letting T = S ∩ Sj as before, we find that |T | ≥ α

2 |Sj | ≥
α
4 |S| and hence by resilience of

Sj and S we have ‖µ− µj‖ ≤ 2 · ( 4
ασ) = 8

ασ by the same triangle inequality argument as before.

Summary. We have now seen that resilience yields robustness both for a small fraction ε of

outliers, and in the list-decodable setting when there is only a small fraction α of good points.

Beyond robustness, this latter result provides a means for clustering data drawn from a mixture of

distributions (see Section 1.4.1). We next examine several examples of resilient distributions and the

implications of Proposition 2.3 and 2.5.

2.2 Examples of Resilient Distributions

Beyond isotropic Gaussians (Example 2.2), there are a number of distributional assumptions that

imply resilience. First, a general characterization of resilience is that a distribution is resilient in a

norm ‖ · ‖ if and only if it has bounded tails in the dual norm ‖ · ‖∗. (Recall that the dual norm to a

norm ‖ · ‖ is defined via ‖v‖∗ = sup‖x‖≤1〈v, x〉.)

Lemma 2.6. For a fixed vector v, let τε(v) denote the ε-quantile of 〈x − µ, v〉: Px∼p[〈x − µ, v〉 ≥
τε(v)] = ε. Then, p is (σ, ε)-resilient in a norm ‖ · ‖ if and only if the ε-tail of p has bounded mean

when projected onto any dual unit vector v:

Ep[〈x− µ, v〉 | 〈x− µ, v〉 ≥ τε(v)] ≤ 1− ε
ε

σ whenever ‖v‖∗ ≤ 1. (2.3)

In particular, the ε-quantile satisfies τε(v) ≤ 1−ε
ε σ.

In other words, if we project onto any unit vector v in the dual norm, the ε-tail of x− µ must

have mean at most 1−ε
ε σ. Thus, for instance, a distribution with variance at most σ2

0 along every unit

vector would have σ = O(σ0
√
ε), since the ε-tail is bounded by O(σ0/

√
ε) by Chebyshev’s inequality.

Lemma 2.6 is proved in Section B.2 (see also Section 2.3 for some intuition).
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In the remainder of this section we give several more concrete examples, many of which leverage

Lemma 2.6. We will focus on establishing resilience of the population distribution; establishing

finite-sample concentration is more technical and is treated in detail in Chapter 3.

Example 2.7 (Bounded moments). Suppose that a distribution p∗ on Rd has bounded kth moments,

in the sense that E[|〈x− µ, v〉|k] ≤ σkk‖v‖k2 for all vectors v ∈ Rd. Then, p∗ is resilient in the `2-norm

with σ∗(ε) ≤ 2σkε
1−1/k for ε ≤ 1

2 , and σ∗(1− ε) ≤ ε−1/kσk.

Proof. We will apply Lemma 2.6. Note that the dual of the `2-norm is again the `2-norm. Now

consider any `2 unit vector v; we have

E[〈x− µ, v〉 | 〈x− µ, v〉 ≥ τε(v)] ≤ (E[|〈x− µ, v〉|k | 〈x− µ, v〉 ≥ τε(v)])1/k (2.4)

≤ (
1

ε
E[|〈x− µ, v〉|k])1/k ≤ ε−1/kσk. (2.5)

Therefore, by Lemma 2.6 we have σ∗(ε) ≤ ε
1−ε · ε

−1/kσk ≤ ε1−1/k

1−ε σk. Thus in particular σ∗(ε) ≤
2ε1−1/kσk for ε ≤ 1

2 , and by Lemma 2.4 we also have σ∗(1− ε) ≤ ε−1/kσk.

Example 2.8 (Item frequency estimation). Let π be a distribution on {1, . . . ,m}, and let Fk(π)

be the distribution on [0, 1]m obtained by sampling k i.i.d. draws from π and taking the empirical

frequency. (For instance, if m = 5 and k = 3, the samples (2, 4, 2) would yield the frequency vector

(0, 23 , 0,
1
3 , 0).) Then Fk(π) is resilient in the `1-norm with σ∗(ε) ≤ 6ε

√
log(1/ε)/k for ε ≤ 1

2 , and

σ∗(1− ε) ≤ 3
√

log(1/ε)/k.

Proof. As before, we will apply Lemma 2.6. The dual of the `1-norm is the `∞-norm, so we need to

bound the tails of Fk(π) when projected onto any `∞ unit vector v.

Now consider a sample y ∼ π, interpreted as an indicator vector in {0, 1}m. We will analyze

the moment generating function E[exp(v>(y − π))] in order to get a tail bound on y − π. Provided

‖v|∞ ≤ 1, the moment generating function is bounded as

E[exp(v>(y − π))] = exp(−v>π)

m∑
j=1

πj exp(vj) (2.6)

(i)

≤ exp(−v>π)

m∑
j=1

πj(1 + vj + v2j ) (2.7)

= exp(−v>π)
(
1 +

m∑
j=1

πj(vj + v2j )
)

(2.8)

(ii)

≤ exp(−v>π) exp(

m∑
j=1

πj(vj + v2j )) = exp(

m∑
j=1

πjv
2
j ). (2.9)

Here (i) uses the fact that exp(z) ≤ 1 + z + z2 for |z| ≤ 1, while (ii) is simply the inequality
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1 + z ≤ exp(z). In particular, (2.9) implies that for any `∞ unit vector v and c ∈ [−1, 1] we have

E[exp(cv>(y − π))] ≤ exp(c2
∑m
j=1 πj) = exp(c2).

Now, let x be an average of k independent samples from π. We claim that the moment generating

function of x satisfies E[exp(cv>(x − π)] ≤ exp(2c2/k). Indeed, the previous result implies that

E[exp(cv>(x−π))] ≤ exp(c2/k) for c ∈ [−k, k]. Then note that v>(x−π) ≤ 2, and so E[exp(cv>(x−
π))] ≤ exp(2c2/k) for all |c| ≥ k as well. Hence E[exp(cv>(x− π))] ≤ exp(2c2/k) for all c.

Now, let E be any event of probability ε. We have

E[v>(x− π) | E] ≤ 1

c
log(E[exp(cv>(x− π)) | E]) (2.10)

≤ 1

c
log(

1

ε
E[exp(cv>(x− π))]) (2.11)

≤ 1

c
log(

1

ε
exp(2c2/k)) (2.12)

=
log(1/ε) + 2c2/k

c
. (2.13)

Optimizing c yields E[v>(x − π) | E] ≤
√

8 log(1/ε)/k, and so (by Lemma 2.4) p is (σ, ε)-resilient

around its mean in the `1-norm, with σ = ε
1−ε

√
8 log(1/ε)/k. The result follows by simple calculation

together with Lemma 2.4.

Our final example will be important to the study of stochastic block models, which are a

common model of graph clustering. Let Ber(q) denote a Bernoulli distribution with parameter q (i.e.,

X ∼ Ber(q) is 1 with probability q and 0 otherwise). We will see later (Section 3.3) that stochastic

block models can be expressed in terms of product distributions where a γ-fraction of the coordinates

have elevated mean.

Example 2.9 (Sparse product distributions). Let p∗ be a product distribution on {0, 1}d, where γd

of the coordinates are Ber(ad ) and the remaining (1− γ)d are Ber( bd ) for some γ ≤ 1
2 . Let ‖x‖(γ) be

the sum of the γd largest coordinates of x (in absolute value). Then p∗ is resilient in the (γ)-norm

with σ∗(ε) ≤ O(ε
√
γmax(a, b) log(1

ε ) + ε log( 1
ε )) for ε ≤ 1

2 .

Proof. The dual of the (γ)-norm can be shown to be ‖v‖∗ = max(‖v‖∞, 1
γd‖v‖1). Moreover, the unit

ball in this norm is the convex hull of all {−1, 0,+1}-vectors with γd non-zero coordinates. Applying

Lemma 2.6, we need to bound the tail of

Z(v) =

γd∑
j=1

vj Ber(
a

d
) +

d∑
j=γd+1

vj Ber(
b

d
) (2.14)

for all such vectors v. Note that the variance of Ber(ad ) is at most a
d , and similarly for Ber( bd ), so that

the sum of the variances (multiplied by v2j ) is at most γmax(a, b). We recall the moment generating

function form of Bernstein’s inequality (proved in Section B.3):
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Proposition 2.10. Suppose that X is a random variable with mean µ such that X ∈ [0, 1] and

Var[X] ≤ S. Then E[exp(λ(X − µ))] ≤ exp((eλ − λ− 1)S) for all λ ≥ 0.

Using Proposition 2.10 to bound each individual term in the sum for Z(v), we then obtain

E[exp(λ(Z(v)− E[Z(v)]))] ≤ exp((eλ − λ− 1)γmax(a, b)). (2.15)

As in Example 2.8, the ε-tail is then bounded by 1
λ ((eλ − λ− 1)γmax(a, b) + log(1/ε)). By taking

λ = min(1,
√

log(1/ε)/γmax(a, b)), we obtain a bound of O(
√
γmax(a, b) log(1

ε ) + log( 1
ε )). By

Lemma 2.6, we conclude that σ∗(ε) ≤ O
(
ε
√
γmax(a, b) log( 1

ε ) + ε log( 1
ε )
)

for ε ≤ 1
2 .

2.3 Basic Properties and Dual Norm Perspective

Having seen several examples of resilient distributions, we now collect some basic properties of

resilience, as well as a dual perspective that is often fruitful.

This dual perspective is already foreshadowed in Lemma 2.6, and is based on the following picture:

µ
µ̂ dual vector v:

‖µ̂− µ‖ = 〈µ̂− µ, v〉v

Figure 2.5: The optimal set T discards the smallest ε|S| elements projected onto a dual unit vector v.

Specifically, letting µ̂ = E[X | E], if we have ‖µ̂− µ‖ = σ, then there must be some dual norm

unit vector v such that 〈µ̂−µ, v〉 = σ and ‖v‖∗ = 1. Moreover, for such a v, 〈µ̂−µ, v〉 will be largest

when E consists of the (1− ε)-fraction of points for which 〈X − µ, v〉 is largest. Therefore, resilience

reduces to a 1-dimensional problem along each of the dual unit vectors v. This is the basic idea

behind Lemma 2.6, as well as Example 2.2.

A related result establishes that for ε = 1
2 , resilience in a norm is equivalent to having bounded

first moments in the dual norm (see Section B.4 for a proof):

Lemma 2.11. Suppose that S is (σ, 12 )-resilient in a norm ‖ · ‖, and let ‖ · ‖∗ be the dual norm.

Then S has 1st moments bounded by 2σ: 1
|S|
∑
i∈S |〈xi − µ, v〉| ≤ 2σ‖v‖∗ for all v ∈ Rd.

Conversely, if S has 1st moments bounded by σ, it is (2σ, 12 )-resilient.
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We can also consider resilience around points µ0 that differ from the mean µ of S, asking that

‖
∑
i∈T (xi − µ0)‖ ≤ σ. This is useful especially in cases where the mean of a finite set might differ

slightly from the population mean. It turns out that if S is resilient around any point µ0, it is also

resilient around its mean:

Lemma 2.12. Suppose that S is (σ, ε)-resilient around a point µ0, in the sense that
∥∥ 1
|T |
∑
i∈T (xi−

µ0)
∥∥ ≤ σ whenever |T | ≥ (1− ε)|S|. Let µ be the mean of S. Then S is (2σ, ε)-resilient around µ.

Conversely, if S is (σ, ε)-resilient around its mean µ, then it is (σ + ‖µ− µ0‖, ε)-resilient around

any other point µ0.

See Section B.5 for a proof. Lemma 2.12 will also be useful in the following two sections where

we are given some initial guess µ̂ of the mean and will want to establish an analog of Proposition 2.5.

2.4 Some Initial Algorithms

So far our focus on resilience has been information-theoretic. However, the information-theoretic

picture already hints at algorithms: if we can efficiently find resilient sets (at least one of which

overlaps S), then we can estimate the mean.

In this section we take this a step further. First, we give a class of norms (finite norms) for which

resilient sets can be found efficiently assuming a good guess of the mean µ. This is not directly useful,

as few norms satisfy the finiteness condition and approximating µ is the entire point of resilience!

However, we can use this result to show that given a collection of candidate means (one of which

is close to the true mean), we can always narrow down to at most O(1/α) candidates, even if the

norm is not finite. This latter result will see repeated use in the sequel, as many of our later efficient

algorithms will output a list of many more than 1/α candidates, which must then be narrowed down.

2.4.1 Efficient Algorithms for Finite Norms

We now show that we can find resilient sets efficiently, assuming that we have a good guess of the

mean µ. We will assume that the norm is finite, in the sense that

‖x‖ =
N

max
j=1
|〈x, vj〉|, (2.16)

for some finite collection of vectors v1, . . . , vN . In this case, whenever a set S exists that is resilient

around a known vector µ, we can find a set S′ that is almost as large as S and that is resilient with

slightly worse parameters:

Theorem 2.13. Assume that x1, . . . , xn contains a set S of size αn that is (σ, α
32 log(4/3α) )-resilient

around a point µ (not necessarily its mean). Then if ‖·‖ takes the form (2.16), there is an O(Nn)-time

algorithm (Algorithm 3) for finding a set S′ that is (2σ, α4 )-resilient around µ, with |S ∩ S′| ≥ α
2 n.
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Roughly, the degree of resilience of S′ is worse by a O(log(2/α))-factor compared to S. Algorithm 3

for producing S′ is given below. The basic idea is to prune away points until the remaining set is

resilient. Since the norm is finite, we can do this by checking resilience along each direction vj ; if we

find a violation of resilience, then the update in line 9 removes bad points faster than it removes

good points.

Algorithm 3 FindResilientSet

1: Input x1, . . . , xn and µ.
2: Initialize c1, . . . , cn = 1.
3: Let Z =

∑n
i=1 ci.

4: for j = 1, . . . , N do
5: Let p denote the distribution placing mass ci

Z on 〈xi − µ, vj〉.
6: Let σ+ denote the mean of the α

8 -fraction of largest values under p.
7: if σ+ ≥ 2σ then
8: Let τi = max(〈xi − µ, vj〉 − σ, 0).
9: Update ci ← ci(1− τi/τmax), where τmax = maxi τi.

10: Go back to line 3.
11: end if
12: Repeat lines 5-11 with vj replaced by −vj .
13: end for
14: Output S′ = {i | ci ≥ 1

2}.

The analysis of Algorithm 3 is similar to the filtering algorithm from Chapter 1. First, we will

show that
∑
i ciτi is small across S and large across {1, . . . , n}.

Lemma 2.14. The weights τi satisfy

∑
i∈S

ciτi ≤
α2

32 log(4/3α)
σ · n, (2.17)

n∑
i=1

ciτi ≥
α

8
σ ·

n∑
i=1

ci. (2.18)

See Section B.6 for a proof. The proof of (2.17) exploits resilience of S, while the proof of (2.18)

uses the assumption that σ+ ≥ 2σ. As a result of Lemma 2.14, updating the ci preserves an invariant

similarly to Lemma 1.5 from Chapter 1:

Lemma 2.15. The update ci ← ci(1− τi/τmax) on line 9 preserves the invariant

n∑
i=1

ci ≤ n exp
(
− 4 log(4/3α)

αn

∑
i∈S

(1− ci)
)
. (R)

In particular,
∑
i∈S(1− ci) ≤ α

4 n throughout the execution of Algorithm 3.

See Section B.7 for a proof. The invariant (R) is more complicated than the invariant (I) from

Lemma 1.5. The reason for this is that while the upper bound (2.17) depends on n, the lower bound
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(2.18) depends on
∑n
i=1 ci, which gets smaller as the algorithm progresses. We therefore need a

non-linear function (the exp function) to track the relative change in
∑
i ci as Algorithm 3 progresses.

This is also the reason for the additional O(log(2/α))-factor.

With Lemmas 2.14 and 2.15 in hand, we can now prove Theorem 2.13.

Proof of Theorem 2.13. Since (R) is preserved (Lemma 2.15), we have that
∑
i∈S(1 − ci) ≤ α

4 n

at the end of Algorithm 3, and hence |S ∩ S′| ≥ α
2 n (since at most α

2 n elements of S can have

ci <
1
2 ). In addition, any α

4 -fraction of elements in S′ would have mass at least α
8 under p, and p is

(2σ, α8 )-resilient by construction (otherwise we would continue to update the ci). Therefore, S′ is

(2σ, α4 )-resilient, as was to be shown.

2.4.2 Corollary: O( 1
α
) Outputs Suffice

While the finite norm assumption in Theorem 2.13 may seem restrictive, it implies the following result

for general norms: If S is resilient around its true mean µ and we are given candidates µ̂1, . . . , µ̂m

such that ‖µ̂j − µ‖ is small for some j, then we can find a sublist L of at most 4
α of the µ̂j such that

‖µ̂j − µ‖ is small for some j ∈ L. More formally:

Corollary 2.16. Suppose that x1, . . . , xn contains a set S of size αn that is (σ, α
32 log(4/3α) )-resilient

around its mean µ. Let µ̂1, . . . , µ̂m be candidate means such that minmj=1 ‖µ̂j −µ‖ ≤ R. Then there is

an efficient procedure that outputs a list L ⊆ {1, . . . ,m} such that |L| ≤ 4/α and minj∈L ‖µ̂j − µ‖ ≤
5(R+ σ).

Corollary 2.16 will be important in Chapter 5, as we will obtain recursive algorithms that output

a multiplicatively increasing number of candidate means, and need a way to narrow down to a smaller

number at each stage to prevent exponential blow-up.

Proof. The basic idea is the following: for each j 6= j′, let vjj′ be the unit vector in the dual norm

such that 〈µ̂j − µ̂j′ , vjj′〉 = ‖µ̂j − µ̂j′‖. Then define the finite norm

‖x‖u = max
j 6=j′
|〈x, vjj′〉|. (2.19)

We have ‖x‖u ≤ ‖x‖ and hence S is also (σ, α
32 log(4/3α) )-resilient around µ under the norm ‖ · ‖u.

Moreover, if ‖µ̂j∗ − µ‖ ≤ R then S is (R+ σ, α
32 log(4/3α) )-resilient around µ̂j∗ by Lemma 2.12.

Now, run Algorithm 3 for each of the candidates µ̂j using the norm ‖ · ‖u. By Theorem 2.13, for

the true candidate µ̂j∗ we obtain a set S′j∗ that is (2(R+ σ), α4 )-resilient around µ̂j∗ and has size at

least α
2 n. We may also obtain such sets S′j for other µ̂j as well.

We can filter the S′j to at most 4/α elements using a modification of the argument from Proposi-

tion 2.5. Consider a maximal subcollection L of the S′j such that |S′j ∩S′j′ | ≤ α2

8 n for all j, j′ ∈ L. By

the pigeonhole principle, there are at most 4
α sets in the subcollection. Moreover, S′j∗ must intersect
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one of these sets S′j in at least α2

8 n elements by maximality of L. By resilience of both S′j∗ and S′j ,

we must then have ‖µj∗ − µj‖u ≤ 4(R + σ). But ‖µj∗ − µj‖u ≥ |〈µj∗ − µj , vj∗j〉| = ‖µj∗ − µ‖, so

‖µj∗ − µj‖ ≤ 4(R+ σ) as well, and hence ‖µ− µj‖ ≤ 4(R+ σ) +R ≤ 5(R+ σ). We can therefore

output the 4
α elements µ̂j for j ∈ L to obtain the desired result.

2.5 Bibliographic Remarks

The concept of resilience was first systematically introduced in Steinhardt et al. (2018), with a

preliminary version of Proposition 2.5 appearing in Section 8 of Charikar et al. (2017). Sections 2.1

and 2.2 closely follow material from Steinhardt et al. (2018). The results on finite norms (Section 2.4.1)

do not to our knowledge appear in the literature, although Proposition B.1 of Diakonikolas et al.

(2018b) contains similar ideas to Corollary 2.16, especially the introduction of the vjj′ variables

to reduce to a finite norm. Kothari and Steinhardt (2018) also uses resilience to prune down a

list of candidate means; it employs a more complicated argument than Corollary 2.16, but has the

advantage of achieving good results in the regime where ε→ 0.

2.6 Exercises

Resilience in Matrix Norms

1. [1+] Given a matrix X ∈ Rd×d, let ‖X‖2 denotes its operator norm: ‖X‖2 = max‖v‖2≤1 ‖Xv‖2.

Let p be a distribution over X such that each coordinate Xij is drawn independently from a

Gaussian distribution N (0, 1). Show that p is (O(
√
ε), ε)-resilient in the operator norm.

Sparsity-inducing Norms

Define the norm ‖x‖Sk = max{〈x, v〉 | ‖v‖2 ≤ 1, ‖v‖0 ≤ k}. Here ‖ · ‖0 denotes the `0-norm (number

of non-zero entries). We call ‖ · ‖Sk a sparsity-inducing norm.

2. [1] Show that if x and y both have at most k non-zero entries, then ‖x− y‖S2k = ‖x− y‖2.

3. [1] Let X ∈ Rd be Gaussian with independent mean-zero entries of variance 1. Show that the

distribution over X is (O(ε
√

log(2/ε)), ε)-resilient under ‖ · ‖Sk .

4. [2+] Define a matrix M ∈ R2k×2k such that Mij is the fraction of digits in which the binary

representations of i − 1 and j − 1 agree with each other. Let p = N (0,M) be a Gaussian

distribution with mean 0 and covariance M . Show that p is (O(
√
ε), ε)-resilient in ‖ · ‖Sk , but

not (c, 1/2)-resilient in the `2-norm for any constant c that is independent of k.

Low-rank recovery

Given a matrix X ∈ Rd×n, we say that X is ε-rank-resilient if for all T ⊆ [n] we have col(XT ) = col(X)

and ‖X†TX‖2 ≤ 2, where XT is the sub-matrix with columns indexed by T .
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5. [2+] Given a matrix X ∈ Rd×n, suppose that X contains a subset S ⊆ [n] of at least (1− ε)n
columns such that XS is ε

1−ε -rank-resilient. Show that it is possible to output a rank-k projection

matrix P such that ‖(I −P )X‖2 ≤ 2σk+1(XS), where σk+1 denotes the k+ 1st-largest singular

value.

Resilience vs. bounded moments

6. [2] We saw in Example 2.7 that any distribution with bounded kth moments is (O(ε1−1/k), ε)-

resilient in the `2-norm. Show that the converse is not true: for every even k ≥ 2, there is a

distribution that is (ε1−1/k, ε)-resilient for all ε ∈ (0, 1/3), but whose kth moment is infinite.

7. [2] Show that there is a partial converse to Example 2.7: if p is (ε1−1/k, ε)-resilient in the

`2-norm for all ε ∈ (0, 1/3), then p has bounded lth moments for all l ∈ [1, k).



Chapter 3

Finite-Sample Concentration and

Resilient Cores

In this chapter we continue the study of resilience, touching upon more advanced topics. In Sections 3.1

through 3.3, we discuss finite-sample concentration properties of resilience. We first establish a

general theorem showing that resilience of a distribution implies resilience of samples from that

distribution with high probability (provided the number of samples n is sufficiently large). We

apply this to our examples from Chapter 2, and then study the semi-random stochastic block model,

showing that resilient sets in this model occur roughly at the Kesten-Stigum threshold.

Next, in Section 3.4, we will show that for strongly convex norms, every resilient set has a “core”

that has bounded covariance. This exposes a surprising geometric structure in resilient sets, and

implies that bounded first moments essentially imply bounded second moments in strongly convex

norms, except for some small fraction of outliers.

This chapter is somewhat more technical than the other chapters. Readers can safely skip to the

next chapter if they wish.

3.1 Finite-Sample Concentration

We start by presenting a meta-result establishing that resilience of a population distribution p implies

resilience of a finite set of samples from that distribution. The number of samples necessary depends

on two quantities:

• B, the ε
2 -quantile of the norm. More precisely, B is such that Px∼p∗ [‖x− µ‖ ≥ B] ≤ ε

2 .

• logM , the log-covering number of the unit ball in the dual norm. More precisely, M is

the size of the minimum set of vectors v1, . . . , vM such that (i) ‖vj‖∗ ≤ 1 for all j and (ii)

maxMj=1〈x, vj〉 ≥ 1
2‖x‖ = 1

2 sup‖v‖∗≤1〈x, v〉 for all vectors x ∈ Rd.

26
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Both B and logM are measures of the effective dimension of a space. For instance, if ‖ · ‖ is the

`2-norm then B is roughly
√
d (plus some function of ε) and logM is Θ(d). For the `∞-norm, logM

is also Θ(d), while for the `1-norm it is Θ(log d). These results are established as exercises at the end

of the chapter.

Our main result, Theorem 3.1, says that if a distribution p is (σ, ε)-resilient, then n i.i.d. samples

from p will have a large (O(σ), ε)-resilient subset provided n� max( 1
ε2 ,

B
σ ) logM .

Theorem 3.1. Suppose that a distribution p is (σ, ε)-resilient with ε < 1
2 . Then, given n samples

x1, . . . , xn ∼ p, with probability 1− δ− exp(−εn/6) there is a subset T of (1− ε)n of the xi such that

T is (σ′, ε)-resilient around the true mean µ with σ′ = O
(
σ ·
(

1 +
√

log(M/δ)
ε2n + (B/σ) log(M/δ)

n

))
.

Note that Theorem 3.1 only guarantees resilience on a (1− ε)n-element subset of the xi, rather

than all of x1, . . . , xn. From the perspective of robust estimation, this is sufficient, as we can simply

regard the remaining εn points as part of the “bad” outlier points. This type of pruning strategy

has proved useful in robust estimation as well as other areas such as matrix completion; see the

bibliographic remarks at the end of this chapter for further discussion.

The sample complexity in Theorem 3.1 is suboptimal in many cases, requiring roughly d1.5

samples when d samples would suffice, due to the B
σ logM term. See Section 6.2 of Steinhardt et al.

(2018) for an alternate bound that yields better results in some settings.

Theorem 3.1 yields bounds for each of the examples from Section 2.2; we discuss these next,

analyzing how many samples are needed to obtain a large resilient set T as in Theorem 3.1.

Example: Bounded Moments. Suppose as in Example 2.7 that p has bounded kth moments.

Then p is (2σkε
1−1/k, ε)-resilient for all ε ≤ 1

2 . Additionally,

P[‖x− µ‖2 ≥ τ ] ≤ Ex∼p[‖x− µ‖k2 ]/τk ≤ CkkEx∼p,v∼{±1}d [|〈x− µ, v〉|k]/τk, (3.1)

where the final inequality is Khinchine’s inequality (Haagerup, 1981), which approximates the norm

of a vector by its expected inner product with a random sign vector; the constant Ck is O(
√
k).

Fixing v and taking the expectation over x, we have

Ex∼p,v∼{±1}d [|〈x− µ, v〉|k] ≤ σkkEv∼{±1}d [‖v‖k2 ] = σkkd
k/2 (3.2)

by the bounded kth moment assumption. Putting these together yields P[‖x − µ‖2 ≥ τ ] ≤
O(σk

√
kd/τ)k, from which we see that B = O(σk

√
kdε−1/k).

Next, for the `2-norm we have logM ≤ d log(6) by a standard covering argument (see Exer-

cise 2). Therefore, the number of samples needed to achieve (O(σkε
1−1/k), ε)-resilience is at most

O(max( 1
ε2 ,

B
σ ) logM) = O( dε2 + k0.5d1.5

ε ).
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Example: Item Frequency Estimation. Next consider item frequency estimation (Example 2.8).

Here we measure resilience in the `1-norm, so logM is the log-covering number in the `∞-norm,

which is at most m log(2) (since the `∞-ball is the convex hull of the 2m sign vectors in {±1}m). We

also know that ‖x− µ‖1 ≤ 2 almost surely, so we can take B = 2 for any value of ε. Finally, we know

that p is (6ε
√

log(1/ε)/k, ε)-resilient from Example 2.8. The number of samples needed to achieve

(O(ε
√

log(1/ε)/k), ε)-resilience is therefore O(max( 1
ε2 ,

B
σ ) logM) = O(mε2 + m

√
k

ε
√

log(1/ε)
). We believe

that the
√
k factor in the second term is unnecessary, although for ε ≤

√
log(k)/k this is irrelevant

as the first term dominates.

Product distributions (Example 2.9) will be analyzed separately in Section 3.3, where we present a

tighter analysis that improves upon Theorem 3.1. We next turn to proving Theorem 3.1.

3.2 Finite-Sample Concentration: Proof of the Main Result

In this section we prove Theorem 3.1. There are two main ideas. The first is that we can reduce to

considering 1-dimensional projections by Lemma 2.6, and then union bound over the projections.

The second idea is that, for each projection, we can split the contribution of the samples into a “bulk”

term that is always small, and a “tail” term that can be bounded via a concentration argument.

Below we first address some preliminaries allowing us to focus our analysis on bounding the

1-dimensional sums (equation 3.3), and then go into the bulk and tail part of the argument.

Preliminaries. Let p′ be the distribution of samples from p conditioned on ‖x− µ‖ ≤ B. Note

that p′ is (σ, ε2 )-resilient around µ since every event with probability 1 − ε/2 in p′ is an event of

probability (1− ε/2)2 ≥ 1− ε in p. Moreover, with probability 1− exp(−εn/6), at least (1− ε)n of the

samples from p will come from p′ (by the Chernoff bound). Therefore, we can focus on establishing

resilience of the n′ = (1− ε)n samples from p′.

With a slight abuse of notation, let x1, . . . , xn′ be the samples from p′. Then to check resilience

we need to bound ‖ 1
|T |
∑
i∈T (xi−µ)‖ for all sets T of size at least (1− ε)n′. We first use the covering

v1, . . . , vM to obtain ∥∥∥ 1

|T |
∑
i∈T

(xi − µ)
∥∥∥ ≤ 2

M
max
j=1

1

|T |
∑
i∈T
〈xi − µ, vj〉. (3.3)

We will analyze the sum over 〈xi−µ, vj〉 for a fixed vj and then union bound over the M possibilities.

Splitting into bulk and tail. For a fixed vj , we will split the sum into two components: those

with small magnitude (roughly σ/ε) and those with large magnitude (between σ/ε and B). We can

bound the former “bulk” term directly, and using resilience we will be able to upper-bound the

second moment of the latter “tail” term, after which we can use Bernstein’s inequality. More formally,
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let τ = 1−ε
ε/4 σ and define

yi = 〈xi − µ, vj〉I[|〈xi − µ, vj〉| < τ ], (3.4)

zi = 〈xi − µ, vj〉I[|〈xi − µ, vj〉| ≥ τ ]. (3.5)

Clearly yi + zi = 〈xi − µ, vj〉. Also, we have |yi| ≤ τ almost surely, and |zi| ≤ B almost surely

(because xi ∼ p′ and hence 〈xi − µ, vj〉 ≤ ‖xi − µ‖ ≤ B).

The threshold τ ensures that zi is non-zero with probability at most ε/2 under p. Indeed, by

Lemma 2.6 we have that τε/4(vj) ≤ 1−ε/4
ε/4 σ ≤ τ . Therefore, the probability that 〈xi − µ, vj〉 ≥ τ is

at most ε/4. Similarly, the probability that 〈xi − µ, vj〉 ≤ −τ is at most ε/4. By the union bound,

Pp[|〈xi − µ, vj〉| ≥ τ ] ≤ ε/2, as claimed. Figure 3.1 summarizes this picture of the yi and zi, and

previews the remainder of the argument.

yizi zi
τ τB B

“bulk”
(can’t offset mean

by more than ετ)

“tail” “tail”

pruned pruned

ε
2 -quantile under p∗

τ ≤ 4σ
ε (Lemma 2.4)E[|zi|] ≤ 2σ

by resilience

Figure 3.1: Decomposition into bulk (yi) and tail (zi). We will show that the bulk cannot change the
mean by more than ετ , while the tail is bounded in expectation by resilience. We will eventually
bound the zi with Bernstein’s inequality.

Now, for any set T of size at least (1− ε)n′, we have

1

|T |
∑
i∈T
〈xi − µ, vj〉 =

1

|T |
∑
i∈T

yi + zi (3.6)

≤
∣∣∣ 1

|T |
∑
i∈T

yi

∣∣∣+
1

|T |
∑
i∈T
|zi| (3.7)

≤
∣∣∣ 1

|T |

n′∑
i=1

yi

∣∣∣+
∣∣∣ 1

|T |
∑
i 6∈T

yi

∣∣∣+
1

|T |

n′∑
i=1

|zi| (3.8)

≤ 1

1− ε

∣∣∣ 1

n′

n′∑
i=1

yi

∣∣∣+
ε

1− ε
τ︸ ︷︷ ︸

bulk

+
1

(1− ε)n′
n′∑
i=1

|zi|︸ ︷︷ ︸
tail

. (3.9)

The last step uses the fact that |yi| ≤ τ for all i. It thus suffices to bound | 1n′
∑n′

i=1 yi| as well as
1
n′

∑n′

i=1 |zi|.
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For the yi term, note that |Ep′ [yi]| ≤ σ by (σ, ε/2)-resilience of p′ (since the event |〈xi−µ, vj〉| < τ

occurs with probability at least 1 − ε/2 under p′). Moreover, |yi| ≤ τ almost surely. Thus by

Hoeffding’s inequality, | 1n′
∑n′

i=1 yi| = O(σ + τ
√

log(2/δ)/n′) with probability 1− δ.

Bounding the tail. For the zi term, note that E[|zi|] = E[max(zi, 0)] + E[max(−zi, 0)]. Let τ ′ be

the ε-quantile of 〈xi−µ, vj〉 under p, which is at most τ (since τ is at least the (ε/4)-quantile). Then

Ep[max(zi, 0)] = Ep[〈xi − µ, vj〉I[〈xi − µ, vj〉 ≥ τ ]] (3.10)

≤ Ep[〈xi − µ, vj〉I[〈xi − µ, vj〉 ≥ τ ′]] (3.11)

(i)

≤ ε · 1− ε
ε

σ = (1− ε)σ, (3.12)

where (i) is by Lemma 2.6. Then Ep′ [max(zi, 0)] ≤ 1
1−εEp[max(zi, 0)] ≤ σ, and hence Ep′ [|zi|] ≤ 2σ

(as E[max(−zi, 0)] ≤ σ by the same argument as above).

Since |zi| ≤ B, we then have E[|zi|2] ≤ 2Bσ. Therefore, by Bernstein’s inequality, with probability

1− δ we have

1

n′

n′∑
i=1

|zi| ≤ O
(
σ +

√
σB log(2/δ)

n′
+
B log(2/δ)

n′

)
= O

(
σ +

B log(2/δ)

n′

)
. (3.13)

Taking a union bound over the vj for both y and z, and plugging back into (3.9), we get that

1
|T |
∑
i∈T 〈xi − µ, vj〉 ≤ O

(
σ + σ

ε

√
log(2M/δ)

n + B log(2M/δ)
n

)
for all T and vj with probability 1 − δ.

Plugging back into (3.3), we get that ‖ 1
|T |
∑
i∈T (xi−µ)‖ ≤ O

(
σ+ σ

ε

√
log(2M/δ)

n + B log(2M/δ)
n

)
. Thus

the points x1, . . . , xn′ are resilient around µ with the claimed parameters.

3.3 Stochastic Block Model and Kesten-Stigum Threshold

Our final information-theoretic result concerns the semi-random stochastic block model from Charikar

et al. (2017), which is a variant of a model proposed in Feige and Kilian (2001). Applying Theorem 3.1

directly yields an overly loose sample complexity bound, so we will show how to directly bound the

sample complexity via a similar union bound argument.

In the semi-random stochastic block model, we consider a graph G on n vertices, with an unknown

set S of αn “good” vertices. For simplicity we assume the graph is a directed graph. For i, j ∈ S, i

is connected to j with probability a
n , and for i ∈ S, j 6∈ S, i is connected to j with probability b

n ,

where b < a. For i 6∈ S the edges are allowed to be arbitrary. This is illustrated in Figure 3.2.

If we let A ∈ {0, 1}n×n be the adjacency matrix of G, then the rows in S (i.e., the good rows) are

independent samples from a distribution p = SBM(a, b, α) on {0, 1}n, which is a product of Ber( an )

and Ber( bn ) distributions as in Example 2.9. The mean µ of this distribution satisfies µj = a
n for
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Figure 3.2: Illustration of the semi-random stochastic block model.

j ∈ S, and µj = b
n for j 6∈ S. As shown in Example 2.9, this distribution is resilient in a trimmed

`1-norm. We will now establish finite-sample concentration for this distribution, and show how

this can be used to recover S. Let x1, . . . , xαn denote the αn samples from p corresponding to the

elements of S.

Lemma 3.2. Suppose that x1, . . . , xαn are drawn from SBM(a, b, α). Take the norm ‖x‖(α) =

max|J|=αn ‖xJ‖1, which is the maximum `1-norm over any αn coordinates of x. Then, with probability

1− exp(−Ω(αn)), the xi are (σ, α/2)-resilient under ‖ · ‖(α) with parameter

σ = O
(
α
√
a log(2/α) + log(2/α)

)
. (3.14)

Proof. Note that we can express ‖x‖(α) as maxv∈V〈x, v〉, where V is the set of αn-sparse {0,+1,−1}
vectors; in particular, |V| =

(
n
αn

)
2αn. By Lemma 2.4 and the definition of resilience, σ is equal to

α/2

1− α/2
max

T⊆{1,...,αn},|T |= 1
2α

2n
max
v∈V

〈 1

|T |
∑
i∈T

xi − µ, v
〉
. (3.15)

We will union bound over all T and v. For a fixed T and v, the inner expression is equal to
2
α2n

∑
i∈T

∑n
j=1 vj(xij − µj). Note that all of the vj(xij − µj) are independent, zero-mean random

variables with variance at most a
nv

2
j and are bounded in [−1, 1]. By Bernstein’s inequality, we have

P

∑
i∈T

n∑
j=1

vj(xij − µj) ≥ t

 ≤ exp
(
−1

2

t2∑
i,j

a
nv

2
j + 1

3 t

)
(3.16)

= exp
(
− t2

α3an+ 2
3 t

)
, (3.17)

Now, if we want our overall union bound to hold with probability 1− δ, we need to set the term in

(3.17) to be at most δ/
[(

αn
α2n/2

)(
n
αn

)
2αn
]
, so t2

α3an+ 2
3 t

= log(1/δ) +O
(
αn log(2/α)

)
= O

(
αn log(2α)

)
(since we will take δ = exp(−Θ(αn))). Hence we can take t = O

(√
α4an2 log(2/α) + αn log(2/α)

)
.
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Dividing through by 1
2α

2n and multiplying by α/2
1−α/2 to match (3.15), we get

σ = O
(
α
√
a log(2/α) + log(2/α)

)
, (3.18)

as was to be shown.

As a corollary, we obtain a result on robust recovery of the set S:

Corollary 3.3. Under the semi-random stochastic block model with parameters α, a, and b, it is

information-theoretically possible to obtain sets Ŝ1, . . . , Ŝ2/α satisfying

1

αn
|Ŝj4S| = O

(√ a log(2/α)

α2(a− b)2
)
. (3.19)

for some j with probability 1− exp(−Ω(αn)).

Proof. By Lemma 3.2 and Proposition 2.5, with probability 1 − exp(−Ω(αn)) we can recover

µ̂1, . . . , µ̂2/α such that

‖µ̂j − µ‖(α) = O
(√

a log(2/α) +
log(2/α)

α

)
. (3.20)

for some j. Note that µi = a
n if i ∈ S and b

n if i 6∈ S, where b < a. We will accordingly

define Ŝj to be the set of coordinates i such that (µ̂j)i ≥ a+b
2n . We then have that ‖µ̂j − µ‖(α) =

Ω(a−bn min(|Ŝj4S|, αn)), and hence 1
αn |Ŝj4S| = O( 1

α(a−b)‖µ̂j −µ‖(α)) whenever the right-hand-side

is at most 1. Using (3.20), we have that

1

αn
|Ŝj4S| = O

(
1

α(a− b)

(√
a log(2/α) +

log(2/α)

α

))
(3.21)

= O
(√

a log(2/α)

α2(a− b)2
+

log(2/α)

α2(a− b)

)
≤ O

(√
a log(2/α)

α2(a− b)2
+
a log(2/α)

α2(a− b)2

)
. (3.22)

The last inequality multiplies the second term by a
a−b , which is at least 1. The first term in (3.22)

dominates whenever the bound is meaningful, which yields the desired result.

Interpretation. We get non-trivial recovery guarantees as long as (a−b)2
a � log(2/α)

α2 . This is

close to the famous Kesten-Stigum threshold (a−b)2
a � 1

α2 , which is the conjectured threshold for

computationally efficient recovery in the classical stochastic block model (see Decelle et al. (2011)

for the conjecture, and Mossel et al. (2013); Massoulié (2014) for a proof in the two-block case).

The above upper bound coincides with the Kesten-Stigum threshold up to a log(2/α) factor. This

coincidence is somewhat surprising, and we conjecture that the upper bound is tight up to log

factors; some evidence for this is given in Steinhardt (2017), which provides a nearly matching

information-theoretic lower bound when a = 1, b = 1
2 .
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3.4 Resilient Cores

In this section we show that for strongly convex norms, every resilient set contains a large subset

with bounded variance. Recall Lemma 2.11, which states that (σ, 12 )-resilience in a norm ‖ · ‖ is

equivalent to having bounded first moments in the dual norm:

Lemma. Suppose that S is (σ, 12 )-resilient in a norm ‖ · ‖, and let ‖ · ‖∗ be the dual norm. Then S

has 1st moments bounded by 2σ: 1
|S|
∑
i∈S |〈xi − µ, v〉| ≤ 2σ‖v‖∗ for all v ∈ Rd.

Conversely, if S has 1st moments bounded by σ, it is (2σ, 12 )-resilient.

The straightforward proof is given in Section B.4. Thus resilience is closely tied to the 1st moment

of p. Suppose now that the norm ‖ · ‖ is γ-strongly convex with respect to itself, in the sense that

1

2
(‖x+ y‖2 + ‖x− y‖2) ≥ ‖x‖2 + γ‖y‖2. (3.23)

In this case, whenever a set S has bounded 1st moments, it has a large “core” with bounded 2nd

moments:

Proposition 3.4. Let S be any set with 1st moments bounded by σ. Then if the norm ‖ · ‖ is

γ-strongly convex, there exists a core S0 of size at least 1
2 |S| with variance bounded by 32σ2

γ . That is,
1
|S0|

∑
i∈S0
|〈xi − µ, v〉|2 ≤ 32σ2

γ ‖v‖
2
∗ for all v ∈ Rd.

While simple to state, the proof of Proposition 3.4 relies on non-trivial facts such as minimax

duality and Khintchine’s inequality (Khintchine, 1923). Moreover, the assumptions seem necessary:

such a core does not exist when ‖ · ‖ is the `p-norm with p > 2 (which is a non-strongly-convex norm),

or with bounded 3rd moments for p = 2 (see Exercise 3).

Proof of Proposition 3.4. Without loss of generality take µ = 0 and suppose that S = [n]. We can

pose the problem of finding a resilient core as an integer program:

min
c∈{0,1}n,‖c‖1≥n

2

max
‖v‖∗≤1

1

n

n∑
i=1

ci|〈xi, v〉|2. (3.24)

Here the variable ci indicates whether the point i lies in the core S0. By taking a continuous relaxation

and applying a standard duality argument, we obtain the following (see Section C.1 for a proof):

Lemma 3.5. Suppose that for all m and all vectors v1, . . . , vm satisfying
∑m
j=1 ‖vj‖2∗ ≤ 1, we have

1

n

n∑
i=1

√√√√ m∑
j=1

|〈xi, vj〉|2 ≤ B. (3.25)

Then the value of (3.24) is at most 8B2.
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We can therefore focus on bounding (3.25). Let s1, . . . , sm ∈ {−1,+1} be i.i.d. random sign

variables. We have

1

n

n∑
i=1

√√√√ m∑
j=1

|〈xi, vj〉|2
(i)

≤ Es1:m

[√
2

n

n∑
i=1

∣∣∣ m∑
j=1

sj〈xi, vj〉
∣∣∣] (3.26)

= Es1:m

[√
2

n

n∑
i=1

∣∣∣〈xi, m∑
j=1

sjvj

〉∣∣∣] (3.27)

(ii)

≤ Es1:m

[
√

2σ
∥∥∥ m∑
j=1

sjvj

∥∥∥
∗

]
(3.28)

≤
√

2σEs1:m
[∥∥∥ m∑

j=1

sjvj

∥∥∥2
∗

] 1
2

. (3.29)

Here (i) is Khintchine’s inequality (Haagerup, 1981) and (ii) is the assumed first moment bound. It

remains to bound (3.29). The key is the following inequality asserting that the dual norm ‖ · ‖∗ is

strongly smooth whenever ‖ · ‖ is strongly convex (c.f. Lemma 17 of Shalev-Shwartz (2007)):

Lemma 3.6. If ‖·‖ is γ-strongly convex, then ‖·‖∗ is (1/γ)-strongly smooth: 1
2 (‖v+w‖2∗+‖v−w‖2∗) ≤

‖v‖2∗ + (1/γ)‖w‖2∗.

Applying Lemma 3.6 inductively to Es1:m
[∥∥∑m

j=1 sjvj
∥∥2
∗

]
, we obtain

Es1:m
[∥∥∥ m∑

j=1

sjvj

∥∥∥2
∗

]
≤ 1

γ

m∑
j=1

‖vj‖2∗ ≤
1

γ
, (3.30)

where the final inequality uses the condition
∑
j ‖vj‖2∗ ≤ 1 from Lemma 3.5. Combining with (3.29),

we have the bound B ≤ σ
√

2/γ, which yields the desired result.

3.5 Bibliographic Remarks

The results in this chapter mostly follow Steinhardt et al. (2018). The idea of pruning points (as

in Theorem 3.1 and Proposition 3.4) to obtain better guarantees was also exploited in Charikar

et al. (2017) to yield improved bounds for a graph partitioning problem. Steinhardt et al. (2018)

also contains an extension of Proposition 3.4 allowing one to obtain sets of size (1− ε)|S| (rather

than 1
2 |S|) under stronger assumptions. Beyond robust estimation, there has been recent interest

in showing how to prune samples to achieve faster rates in random matrix settings (Guédon and

Vershynin, 2014; Le et al., 2015; Rebrova and Tikhomirov, 2015; Rebrova and Vershynin, 2016).

Some of these techniques are also related to the BSS sparsification procedure (Batson et al., 2012),

which is a spectral approximation technique in the graph sparsification literature.
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In the theory of Banach spaces, strong convexity and smoothness of a norm are referred to as

bounded cotype and bounded type of the norm, respectively (see for instance Chapter 9 of Ledoux and

Talagrand (1991)). It would be interesting to explore this connection further.

3.6 Exercises

1. [1+] Show that for the `1-norm we have M ≤ d, while for the `∞-norm we have M ≤ 2d.

2. In this exercise we will show that M ≤ 6d for the `2-norm. In other words, there are unit

vectors v1, . . . , vM with M ≤ 6d such that maxMj=1〈x, vj〉 ≥ 1
2‖x‖2.

(a) [2] Let P be the maximum number of unit vectors x1, . . . , xP such that ‖xi − xj‖2 ≥ 1/2

for all i 6= j. Show that P ≤ 6d. (Hint: draw a sphere of radius 1/4 around each point xi

and compare volumes.)

(b) [2] Let Q be the minimum number of unit vectors y1, . . . , yQ such that minQj=1 ‖yi−x‖2 ≤
1/2 whenever ‖x‖2 = 1. Show that Q ≤ P .

(c) [1+] Show that {y1, . . . , yQ} constitutes a valid covering. (Hint: use the fact that 〈x, v〉 =
1
2 (‖x‖22 + ‖v‖22 − ‖x− v‖22).)

3. Let S = {e1, . . . , en} where the ei are the standard basis in Rn.

(a) [1+] Show that S is (2n1/p−1, 12 )-resilient in the `p-norm for all p ∈ [1,∞].

(b) [1+] Let ‖ · ‖q be the dual to the `p-norm. Show that any subset T ⊆ S with |T | ≥ n/2
has max‖v‖q≤1

1
|S|
∑
i∈S |〈ei, v〉|k ≥ (n/2)max(−1,k( 1

p−1)).

(c) [1+] Show that this can only be independent of n when k ≤ p
p−1 . What does this say

about possible generalizations of Proposition 3.4?

4. [2+] Suppose that, for the stochastic block models in Section 3.3, we use the `1-norm instead

of the trimmed `1-norm ‖ · ‖(α). Show that concentration does not hold in the `1-norm—the

samples are only (σ, α/2)-resilient with σ = Ω(
√
aα), and hence applying Proposition 2.5 yields

a weaker bound than Corollary 3.3.



Chapter 4

Robust Mean Estimation via

Moments and Eigenvectors

We now turn our attention to computationally efficient robust estimation. Recall again the general

setting: we are given n data points x1, . . . , xn; (1− ε)n of the points are drawn from a distribution

p∗, while the remaining are arbitrary outliers. The goal is to estimate the mean µ of p∗.

In Chapter 2 we saw that the property of resilience is information-theoretically sufficient to

estimate µ. One consequence is that if a distribution p∗ has covariance bounded by σ2, then it is

possible to estimate µ with error O(σ
√
ε). We will now see how to obtain this same result efficiently.

The algorithm is a higher-dimensional analog of Algorithm 2, and admits a similar analysis. In

Section 4.3, we will extend the algorithm to a general family of stochastic optimization problems.

4.1 `2 mean estimation via eigenvectors

Recall that in Chapter 1 we established Proposition 1.6, which showed that Algorithm 2 robustly

estimates the mean in 1 dimension when the good data have bounded variance. In this section we

will establish the multi-dimensional generalization of Proposition 1.6, under the assumption that the

data have bounded covariance.

Proposition 4.1. Suppose that x1, . . . , xn ∈ Rd contain a subset S of size (1− ε)n that has bounded

covariance: 1
|S|
∑
i∈S(xi − µ)(xi − µ)> � σ2I, where µ is the mean of S. Then if ε ≤ 1

12 , there is an

efficient algorithm (Algorithm 4) whose output µ̂ satisfies ‖µ̂− µ‖2 = O(σ
√
ε).

While for our information-theoretic results we required resilience, here we require the stronger

bounded covariance assumption. Note that bounded covariance implies (O(σ
√
ε), ε)-resilience by

Lemma 2.6. Intuitively, bounded covariance gives us an efficiently-checkable sufficient condition for

36
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resilience. In some cases, resilience is also sufficient to imply bounded covariance—see Proposition 3.4

on strongly convex norms.

Algorithm 4 is given below, and is identical to Algorithm 2 except that we project onto the

maximum eigenvector v of the covariance when computing σ̂c and τi.

Algorithm 4 FilterL2

1: Input: x1, . . . , xn ∈ Rd.
2: Initialize weights c1, . . . , cn = 1.

3: Compute the empirical mean µ̂c of the data, µ̂c
def
= (

∑n
i=1 cixi)/(

∑n
i=1 ci).

4: Compute the empirical covariance Σ̂c
def
=
∑n
i=1 ci(xi − µ̂c)(xi − µ̂c)>/

∑n
i=1 ci.

5: Let v be the maximum eigenvector of Σ̂c, and let σ̂2
c = v>Σ̂cv.

6: If σ̂2
c ≤ 16σ2, output µ̂c.

7: Otherwise, let τi = 〈xi − µ̂c, v〉2, and update ci ← ci · (1− τi/τmax), where τmax = maxi τi.
8: Go back to line 3.

Proof of Proposition 4.1. The proof directly mirrors Proposition 1.6. As with Algorithm 2, the

intuition is that whenever σ̂2
c is much larger than the variance σ2 of the good data, the bad points

must on average be far away from the empirical mean, which implies that τi is large on average. We

can formalize this with an analog of Lemma 1.4. Recall the invariant (I) from Lemmas 1.4 and 1.5:

∑
i∈S

(1− ci) ≤
1− ε

2

∑
i 6∈S

(1− ci) (I)

This invariant ensures that most of the mass of the ci remains on the good points S. Assuming that

(I) holds, we can show that τi is small on S and large overall, and also relate ‖µ− µ̂c‖2 to σ̂c. This

is done in Lemma 4.2, which is a direct analog of the 1-dimensional Lemma 1.4:

Lemma 4.2. Suppose that the invariant (I) holds. Then ‖µ− µ̂c‖2 ≤ σ
√

ε
2−ε + σ̂c

√
ε

1−ε .

Suppose further that σ̂2
c ≥ 16σ2 and ε ≤ 1

12 . Then we have

∑
i∈S

ciτi ≤
1− ε

3
σ̂2
cn, while

∑
i6∈S

ciτi ≥
2

3
σ̂2
cn. (4.1)

Proof. Note that Lemma 1.4 provides the identical statement in 1 dimension. Indeed, Lemma 4.2

follows by applying Lemma 1.4 along each vector u. The variances along u are u>Σu and u>Σ̂cu,

which are at most σ2 and σ̂2
c respectively, so by Lemma 1.4 we have 〈µ− µ̂c, u〉 ≤ σ

√
ε

2−ε + σ̂c
√

ε
1−ε .

Since this holds for all unit vectors u, we obtain the corresponding bound on ‖µ− µ̂c‖2, which yields

the first part of Lemma 4.2.

For the second part, note that τi = 〈xi − µ̂c, v〉2. This is equivalent to the definition of τi in

Lemma 1.4, with the vectors xi replaced by the scalars x̃i = 〈xi − µ̂c, v〉. The variance of the x̃i



CHAPTER 4. ROBUST MEAN ESTIMATION VIA MOMENTS AND EIGENVECTORS 38

across S is v>Σv ≤ σ2, while the variance with respect to the ci is v>Σ̂cv = σ̂2
c . The condition of

Lemma 1.4 therefore holds and we obtain the desired conclusion (4.1).

The conclusion (4.1) allows us to separate the good points from the bad points. In particular, by

Lemma 1.5, the update ci ← ci · (1− τi/τmax) on line 7 preserves the invariant (I), so by induction

(I) holds when we output µ̂c. By Lemma 4.2, we then have ‖µ̂c − µ‖2 ≤ O(σ
√
ε+ σ̂c

√
ε) = O(σ

√
ε).

This completes the proof of Proposition 4.1.

Remark 4.3. In Section 1.4, we presented a 1-dimensional algorithm that works in the list-decodable

setting when α ≤ 1
2 (i.e., ε ≥ 1

2 ). While that algorithm does not easily generalize to higher dimensions,

it is possible to design a version of FilterL2 that works when α ≤ 1
2 . At a high level, in addition to

downweighting based on the τi, one needs to check if the τi can be split into distinct subpopulations

that are more tightly clustered than the original points. This idea is explored for Gaussian distributions

in Diakonikolas et al. (2018b).

4.2 Moment estimation yields robust mean estimation

There was nothing special about the `2-norm in the previous subsection. Indeed, the proof of

Lemma 4.2 followed by applying Lemma 1.4 projected along every unit vector u. If instead of the

`2-norm we wished to estimate µ in some norm ‖ · ‖, we would instead want to project along all unit

vectors u in the dual norm ‖ · ‖∗. The following algorithm generalizes FilterL2, and also allows for

only approximately solving the corresponding eigenvector problem:

Algorithm 5 FilterNorm

1: Initialize weights c1, . . . , cn = 1.

2: Compute the empirical mean µ̂c of the data, µ̂c
def
= (

∑n
i=1 cixi)/(

∑n
i=1 ci).

3: Compute the empirical covariance Σ̂c
def
=
∑n
i=1 ci(xi − µ̂c)(xi − µ̂c)>/

∑n
i=1 ci.

4: Let v be any vector satisfying ‖v‖∗ ≤ 1 and v>Σ̂cv ≥ 1
κ max‖u‖∗≤1 u

>Σ̂cu.

5: If v>Σ̂cv ≤ 16σ2, output µ̂c.
6: Otherwise, let τi = 〈xi − µ̂c, v〉2, and update ci ← ci · (1− τi/τmax), where τmax = maxi τi.
7: Go back to line 2.

Algorithm 5 enjoys the following bound analogous to Proposition 4.1:

Proposition 4.4. . Let Σ = 1
|S|
∑
i∈S(xi−µ)(xi−µ)> be the variance of the good data, and suppose

that u>Σu ≤ σ2 whenever ‖u‖∗ ≤ 1. Furthermore suppose that ε ≤ 1
12 . Then Algorithm 5 outputs an

estimate µ̂c satisfying ‖µ̂c − µ‖ ≤ O(σ
√
κε).

The proof is essentially identical to Proposition 4.1 and is given as an exercise.

In fact, one can generalize Algorithm 5 even further, although we will not go into detail here.

First, rather than approximating the eigenvector problem with a unit vector v, it suffices to find
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any matrix M that is (1) in the convex hull of {uu> | ‖u‖∗ ≤ 1} and (2) satisfies 〈M, Σ̂c〉 ≥
1
κ max‖u‖∗≤1 u

>Σ̂cu. This is important as in many norms the eigenvector problem admits efficient

semidefinite approximations that yield such a matrix M . See Li (2017) and Steinhardt et al. (2018)

for examples of this idea.

Second, one can apply analogs of Algorithm 5 for higher moments. In this case, Σ̂c is replaced

by the moment tensor Tc =
∑n
i=1 ci(xi − µ̂c)⊗k, for some even k ≥ 2. We can correspondingly let

τi = 〈xi − µ̂c, v〉k. The main issue is that even approximating the eigenvector problem for higher

moments is believed to be hard. We will return to this later in Chapter 5, where we will see some

assumptions under which the eigenvector problem for higher moments can be efficiently approximated.

4.3 Generalization to robust stochastic optimization

So far we have focused almost exclusively on mean estimation. While this may seem limiting, in fact

many problems in machine learning reduce to mean estimation. Here we show that mean estimation

is sufficient for solving stochastic optimization problems.

In stochastic optimization (also sometimes called M-estimation), we observe functions fi drawn

from a distribution p∗, where Ef∼p∗ [f(w)] = f̄(w) for some target function f̄ . For instance, in linear

regression we might have fi(w) = (yi − w · xi)2.

To model stochastic optimization with outliers, we assume that we observe n functions f1, . . . , fn :

H → R (where H is the input domain). A (1− ε)-fraction of the fi are “good”, while the remaining

are arbitrary outliers. As before, let S denote the indices of the good functions.

The key idea is that we can use Algorithm 4 to perform robust mean estimation on the gradients

of fi, which will allow us to find an approximate stationary point of f̄ . The main twist is that rather

than re-initializing the weights ci to 1 every time we invoke Algorithm 4, we will want to keep a

single set of weights ci that are updated persistently throughout all runs of the algorithm. This

procedure is summarized below:

Algorithm 6 RobustStochasticOpt

1: Input: functions f1, . . . , fn.
2: Initialize weights c1, . . . , cn = 1.
3: Find any γ-approximate stationary point, i.e. any point ŵ such that

∥∥ n∑
i=1

ci∇fi(ŵ)/

n∑
i=1

ci
∥∥
2
≤ γ. (4.2)

4: Run FilterL2 (Algorithm 4) initialized with weights ci and with points xi = ∇fi(ŵ).
5: If the ci are updated by FilterL2, go back to line 3.
6: Otherwise, output ŵ.

When Algorithm 6 terminates, it outputs a point ŵ such that
∥∥ 1
|S|
∑
i∈S ∇fi(ŵ)

∥∥
2
≤ γ+O(σ

√
ε),
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where σ is a bound on the covariance of the gradients xi = ∇fi(ŵ). More formally, we have:

Proposition 4.5. Suppose that the good points fi have gradients with bounded covariance at all

points w:
1

|S|
∑
i∈S

(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))> � σ2I (4.3)

for all w ∈ H, where f̄ = 1
|S|
∑
i∈S fi. Then the output ŵ of Algorithm 6 satisfies ‖∇f̄(ŵ)‖2 ≤

γ +O(σ
√
ε).

To interpret the assumption (4.3), suppose first that fi(w) = 1
2‖w − xi‖

2
2, which corresponds to

mean estimation. Then ∇fi(w) = w− xi, and ∇fi(w)−∇f̄(w) = µ− xi. The assumption (4.3) then

becomes 1
|S|
∑
i∈S(xi − µ)(xi − µ)> � σ2I, which is the same as the assumption in Proposition 4.1.

Product distributions. As another example, suppose that xi is drawn from a product distribution

on {0, 1}d, where the jth coordinate is 1 with probability pj . Let fi(w) =
∑d
j=1 xij log(wj) + (1−

xij) log(1 − wj). In this case f̄(w) =
∑d
j=1 pj log(wj) + (1 − pj) log(1 − wj), and w∗j = pj , so that

f̄(w)− f̄(w∗) is the KL divergence between p and w.

The jth coordinate of ∇fi(w)−∇f̄(w) is (xij−pj)(1/wj+1/(1−wj)). In particular, the matrix in

(4.3) can be written as D(w)ΣD(w), where Σ = 1
|S|
∑
i∈S(xi − µ)(xi − µ)> and D(w) is the diagonal

matrix with entries 1/wj + 1/(1−wj). Suppose that p is balanced, meaning that pj ∈ [1/4, 3/4], and

that we restrict wj ∈ [1/4, 3/4] as well. Then ‖D(w)‖op ≤ 16/3, while the matrix Σ has maximum

eigenvalue converging to maxdj=1 pj(1− pj) ≤ 1
4 for large enough n. Thus σ2 = O(1) in this setting.

Proof of Proposition 4.5. An examination of the proof of Proposition 4.1 shows that it holds whenever

the ci in Algorithm 4 are initialized in a way that satisfies (I). In particular, it holds for the ci in

Algorithm 6 (since the initial value ci = 1 satisfies (I), and each run of Algorithm 4 preserves the

invariant).

It follows that when Algorithm 6 terminates, we have ‖µ̂c − µ‖2 ≤ O(σ
√
ε), where µ̂c =∑n

i=1 ci∇fi(ŵ)/
∑n
i=1 ci and µ = 1

|S|
∑
i∈S ∇fi(ŵ) = ∇f̄(ŵ). By the triangle inequality, ‖∇f̄(ŵ)‖2 =

‖µ‖2 ≤ ‖µ̂c‖2 + ‖µ− µ̂c‖2 ≤ γ +O(σ
√
ε), as claimed.

Proposition 4.5 allows us to extend results on mean estimation to results for a broad family of

optimization problems. For instance, if the fi are convex, then we can make γ arbitrarily small using

e.g. gradient descent or another appropriate convex optimization algorithm. We can thus assume

that ‖∇f̄(ŵ)‖2 = O(σ
√
ε). We then obtain the following corollary:

Corollary 4.6. Under the assumptions of Proposition 4.5, suppose that the fi are convex and that

γ = O(σ
√
ε) in Algorithm 6. Then if the diameter of H is at most r, Algorithm 6 outputs a ŵ such

that f̄(ŵ)− f̄(w∗) = O(σr
√
ε).

If, in addition, f̄ is β-strongly convex, then Algorithm 6 outputs a ŵ such that f̄(ŵ)− f̄(w∗) =

O(σ2ε/β) and ‖ŵ − w∗‖2 = O(σ
√
ε/β).
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Proof. Let w∗ be the global minimizer of f̄ . We have f̄(ŵ) − f̄(w∗) ≤ 〈∇f̄(ŵ), ŵ − w∗〉 ≤
‖∇f̄(ŵ)‖2‖ŵ − w∗‖2, where the first step is by convexity and the second is Cauchy-Schwarz. Since

‖ŵ − w∗‖2 ≤ r by assumption, we then have that f̄(ŵ)− f̄(w∗) ≤ O(σr
√
ε).

Suppose further that f̄ is β-strongly convex, meaning that f̄(w′) − f̄(w) ≥ 〈∇f̄(w), w′ − w〉 +
β
2 ‖w

′ − w‖22. Applying this at w′ = ŵ, w = w∗, we obtain β
2 ‖ŵ − w∗‖22 ≤ f̄(ŵ) − f̄(w∗) ≤

‖∇f̄(ŵ)‖2 · ‖ŵ − w∗‖2, where the right-hand inequality is from the argument above. We thus obtain

‖ŵ − w∗‖2 ≤ 2
β ‖∇f̄(ŵ)‖2 = O(σ

√
ε/β). Plugging back into the bound on f̄(ŵ)− f̄(w∗), we obtain

f̄(ŵ)− f̄(w∗) ≤ O(σ2ε/β).

As a final remark, in some cases the uniform assumption (4.3) is too crude. For instance, in linear

regression the gradients are larger (and have larger variance) when w is far away from the optimum

w∗. In such cases, better results may be obtained by replacing σ2 in (4.3) with a functional form

that depends on w, such as (σ0 + σ1‖w − w∗‖2)2. We do not explore this here, but see Appendix B

of Diakonikolas et al. (2018a) for an analysis of this case.

Remark 4.7. While Proposition 4.5 applies to many stochastic optimization problems, the quality

of the bound depends on the parameter σ. In particular, the bounded covariance assumption means

that we essentially measure the gradients in the `2-norm (although Proposition 4.4 could be applied

to measure the gradients in other norms as well). Moreover, in some cases the second moments

are too crude a measure—we may have bounds on much higher moments, in which case we might

hope for better dependence on ε; or we may not even have bounded second moments. A particular

challenge case is robust classification, where points far away from the decision boundary, as well as

the existence of multiple classes, leads to large variance in the gradients of the loss but intuitively

should not affect the result.

4.4 Bibliographic Remarks

Variants of the filtering idea appear in a number of works, going back to at least Klivans et al.

(2009), where an SVD-based filter is used for robust classification. Klivans et al. (2009) uses a

“hard” filtering step that loses log factors in the bounds. The filtering idea first appears in a form

similar to Algorithm 4 in Diakonikolas et al. (2016); that work applies to Gaussian distributions,

but Diakonikolas et al. (2017a) show that the same filtering idea also works under the second

moment assumptions considered above. Concurrently with Diakonikolas et al. (2016), Lai et al. (2016)

developed a SVD-based filter that operates via a somewhat different divide-and-conquer strategy.

The generalized Algorithm 5 is well-known to experts but we are not aware of it appearing

explicitly in published form. Steinhardt et al. (2018) provide a similar generalization of a different

duality-based algorithm (see Chapter 5 for more discussion of such algorithms). Li (2017) uses a

filtering algorithm in a sparsity-inducing norm to obtain results for robust sparse mean estimation.
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Under stonger assumptions, it is possible to improve the O(
√
ε) dependence in Proposition 4.1.

Diakonikolas et al. (2016) show how to do this for Gaussian distributions, while Kothari and Steinhardt

(2018) and Hopkins and Li (2018) do this assuming the higher moments of the distribution have

bounded sum-of-squares norm.

Generalizations from mean estimation to stochastic optimization appear in Prasad et al. (2018)

and Diakonikolas et al. (2018a). An earlier partial generalization (to generalized linear models and

some other settings) appears in Du et al. (2017).

4.5 Exercises

1. Prove Proposition 4.4.

Sparsity-inducing norms Suppose that p∗ = N (µ, σ2I) is a d-dimensional Gaussian distribution

with ‖µ‖0 ≤ k, i.e. the mean is k-sparse. The next several exercises will show how to robustly

estimate µ. Let ‖ · ‖Sk denote the sparsity-inducing norm from Chapter 2, Exercise 2.

2. Let Mk = {M ∈ Rd×d |M � 0, tr(M) ≤ 1,
∑
i,j |Mij | ≤ k}.

(a) [1+] Show that, for any matrix S, we have supM∈Mk
〈S,M〉 ≤ sup‖v‖2≤1,‖v‖0≤k v

>Sv.

(b) [1] Show that supM∈Mk
〈M,σ2I〉 = σ2.

3. [2+] Let M′ be the set of symmetric k2-sparse d× d matrices M with ‖M‖F ≤ 1. Show that

Mk ⊆ 4 conv(M′), where conv denotes convex hull.

4. Let x1, . . . , xn ∼ N (0, I), and let Σ̂ = 1
n

∑n
i=1 xix

>
i .

(a) [2+] Show that for any fixed M ∈ M′ we have |〈Σ̂ − I,M〉| ≤ O
(√

log(2/δ)
n

)
with

probability 1− δ. (Hint: Use the Hanson-Wright inequality.)

(b) [2] Show that with probability 1− δ, we have |〈Σ̂− I,M〉| ≤ O
(√

k2 log(d)+log(2/δ)
n

)
for

all M ∈M′. (Hint: Use the result of Chapter 3, Exercise 2).

5. [2] Suppose that x1, . . . , xn ∼ N (µ, σ2I) and let Σ̂ be the empirical covariance matrix of the xi.

If n = Ω(k2 log(d) + log(2/δ)), Show that supM∈Mk
〈Σ̂,M〉 ≤ O(σ2) with probability 1− δ.

6. [2] Suppose that (1 − ε)n of the xi are drawn from N (µ, σ2I) and the remaining εn points

are arbitrary outliers, where ε ≤ 1
12 and n = Ω(k2 log(d) + log(2/δ)). Design an algorithm

outputting an estimate µ̂ such that ‖µ̂− µ‖2 = O(σ
√
ε). (Hint: Modify Algorithm 5.)

Remark 4.8. Li (2017) shows how to obtain a better error ofO(σε) when n ≥ Ω(k
2 log(d)+log(2/δ)

ε2 ).



Chapter 5

Robust Estimation via Duality

Our final chapter presents an alternate approach to robust estimation based on duality. This approach

generalizes more cleanly than the eigenvector-based algorithm from Chapter 5, and allows one to

directly handle stochastic optimization problems rather than going through the intermediate step of

gradient estimation. While for the most part similar results can be established through the moment

approach from Chapter 4 and the duality approach presented here, the duality approach works

somewhat better when α is small while the moment approach yields better bounds when α → 1.

However, both approaches are under active development and so this picture will likely change in the

future.

The core elements of the duality approach already occur in Algorithm 4. As before, the goal will

be to find some quantity τi such that (1) if
∑
i ciτi is small, then we can output a good estimate of

the parameters we wish to recover; and (2) if
∑
i ciτi is large, then it must be much larger on the

bad data than the good data, thus allowing us to filter via Lemma 1.5.

Rather than constructing τi as a secondary step, we will identify a family of optimization problems

for which the τi fall out naturally, as certain dual potential functions. This family, given in terms of

saddle point (min-max) problems, is introduced in Section 5.1; the key property is that for a fixed

value of the dual variables, the optimization decomposes additively across data points.

We will first see (Section 5.2) that for non-negative cost functions, it is possible to recover a

O(1/α)-approximation to the optimal cost, where α is the fraction of good points. In particular, if

the fraction ε = 1−α of outliers is at most 1
2 , then we recover a constant factor approximation to the

optimum. This will allow us to recover the same O(σ
√
ε) bound as in Chapter 4, as well as a bound

of O(σ/α1.5) that holds even when the fraction α of good points is less than 1
2 . This latter bound is

new to this section (but see Remark 4.3 on extending the moment approach to the small-α regime).

Next, we will see how to obtain stronger bounds that hold even when the cost functions are

potentially negative, as long as the functions satisfy a certain coupling inequality in terms of

non-negative regularization functions. This improves the mean estimation bound to O(1/
√
α)

43
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(Section 5.3.2); we can also do even better under a stronger sum-of-squares assumption (Section 5.3.3).

5.1 A Family of Saddle Point Problems

In this section we identify the family of optimization problems for which our results will hold. Given

a primal domain H and a dual domain Λ, suppose we are given functions f1, . . . , fn : H×Λ→ R.

Our goal will be to solve optimization problems of the following form:

min
wi∈H

max
λ∈Λ

n∑
i=1

fi(wi, λ). (5.1)

Here we abuse notation and use wi ∈ H to mean w1, . . . , wn ∈ H. In Section 5.2 we will treat a

subset S of the fi as good points and the remaining fi are outliers, and try to minimize the sum

only over the good points. For now, however, we examine the basic structure of (5.1).

We will typically assume that each fi is convex in wi and concave in λ, in which case (under mild

assumptions) Sion’s minimax theorem implies that the order of min and max can be switched:

min
wi∈H

max
λ∈Λ

n∑
i=1

fi(wi, λ) = max
λ∈Λ

min
wi∈H

n∑
i=1

fi(wi, λ) = max
λ∈Λ

n∑
i=1

min
wi∈H

fi(wi, λ)︸ ︷︷ ︸
def
= τi

. (5.2)

For a fixed λ, the terms minwi∈H fi(wi, λ) will play the role of τi. We will see this in more detail

below. Before that, we give examples of problems taking the form (5.1).

Example 5.1 (Matrix reconstruction). Suppose we are given n data points x1, . . . , xn ∈ Rd, which

we stack into a matrix X ∈ Rd×n. Consider the reconstruction problem

minimize ‖X −XW‖22 subject to 0 ≤Wij ≤
1

αn
,
∑
j

Wij = 1∀i. (5.3)

This asks to reconstruct X in terms of convex combinations of its columns, such that each weight in

the convex combination is at most 1
αn . Let H = {w ∈ Rn | 0 ≤ wj ≤ 1

αn ,
∑
j wj = 1}. Using the fact

that ‖Z‖22 = max{tr(Z>Y Z) | Y � 0, tr(Y ) ≤ 1}, we can re-write (5.3) as

min
wi∈H

max
Y�0,tr(Y )≤1

n∑
i=1

(xi −Xwi)>Y (xi −Xwi), (5.4)

which has the form of (5.1) with fi(wi, Y ) = (xi −Xwi)>Y (xi −Xwi).

Example 5.2 (Low-rank Approximation). Suppose again that we are given data points x1, . . . , xn

stacked into a matrix X ∈ Rd×n. We can regularize by the nuclear norm ‖ · ‖? to approximate X by
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a low-rank matrix W :

min
W
‖X −W‖22 + γ‖W‖?, (5.5)

for some constant γ. We can use the same dual form for the operator norm as before, as well as the

relation ‖W‖? = max‖Z‖2≤1 tr(Z>W ). This yields the equivalent optimization

min
wi∈Rd

max
Y�0,tr(Y )≤1
‖Z‖2≤1

n∑
i=1

(xi − wi)>Y (xi − wi) + γ〈wi, zi〉. (5.6)

This has the form (5.1) with H = Rd, Λ = {(Y,Z) | Y � 0, tr(Y ) ≤ 1, ‖Z‖2 ≤ 1}, and fi(wi, Y, Z) =

(xi − wi)>Y (xi − wi) + γ〈wi, zi〉.

Example 5.3 (Stochastic optimization). Suppose that we are given convex functions gi : H → R
and wish to minimize

∑
i gi(w). This does not have the form of (5.1) (because we are only minimizing

over a single w) but we can approximate the objective by minimizing
∑
i gi(wi) +Ri(wi;λ), where

Ri is a regularizer encouraging the wi to have similar values. For instance, similarly to the previous

example we can pose the optimization

min
wi∈H

max
‖Z‖2≤1

n∑
i=1

gi(wi) + γ〈wi, zi〉. (5.7)

This regularizes the nuclear norm of the matrix W = [wi]
n
i=1, which encourages W to have low rank.

In the extreme case where W has rank 1, the wi are all scalar multiples of each other. In later

sections we will show formally that an analog of (5.7) approximates the objective
∑n
i=1 gi(w).

We will see more examples later in this chapter. We next study the min-max problem (5.1) in

the presence of outliers.

5.2 Robustly Approximating Saddle Point Problems

We will now see how to solve the optimization problem (5.1) even in the presence of some number of

outlier functions. More formally, suppose that we are given functions f1, . . . , fn : H×Λ→ R, and

that there is an unknown subset S ⊆ [n] of good functions. Our goal is to find w1, . . . , wn ∈ H so as

to minimize

max
λ∈Λ

∑
i∈S

fi(wi, λ). (5.8)

If we knew S, then solving (5.8) would be a purely algorithmic problem, but because S is unknown

we also need a strategy for dealing with the outliers. Our first main result is that, under certain

assumptions, we can obtain an O(1/α)-approximation to (5.8):
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Theorem 5.4. Suppose that each fi is a continuous non-negative function that is convex in w and

concave in λ, and that H and Λ are convex and compact. For an unknown good set S, let V be the

minimum value of (5.8). Then there is a procedure (Algorithm 7) that outputs parameters ŵ1, . . . , ŵn

such that

max
λ∈Λ

∑
i∈S′

fi(ŵi, λ) ≤ O(V/α) (5.9)

for some S′ ⊆ S satisfying |S′| ≥ α(1+α)
2 n.

Note that Theorem 5.4 only guarantees that fi is small across some large subset S′ of S, rather

than S itself. This is because when we remote outliers we might end up removing some good points

along with the bad points. Previously, this was not an issue because resilience ensured that any large

subset would have a similar mean to S. Now, we need to ensure that minimizing fi over a large

subset S′ is sufficient for a given problem of interest.

When α = 1− ε the guarantee yields |S′| ≥ (1− 3ε/2)n, meaning that fi is small on almost all of

the good points S. For any α, Theorem 5.4 implies that fi is small on at least half of S.

The compactness assumption on H and Λ is needed to rule out degenerate cases, but can often

be effectively ignored (for instance, by taking the intersection of H and Λ with a sufficiently large

ball). We will mostly ignore this issue in the sequel.

As background, we recall Sion’s minimax theorem (presented as a special case for clarity):

Theorem 5.5 (Sion (1958)). Suppose that F : H×Λ→ R is a continuous function that is convex

in H and concave in Λ. Also suppose that H and Λ are convex and compact. Then

min
w∈H

max
λ∈Λ

F (w, λ) = max
λ∈Λ

min
w∈H

F (w, λ). (5.10)

Moreover, there is a saddle point (w?, λ?) such that maxλ∈Λ F (w?, λ) = minw∈H F (w, λ?).

We will apply Theorem 5.5 to the function F (w1:n, λ) =
∑n
i=1 cifi(wi, λ), which will allow us to

construct appropriate scalars τi = fi(w
?
i , λ

?) in Algorithm 7.

Algorithm 7 DualFilter

1: Input: functions f1, . . . , fn.
2: Initialize weights c1, . . . , cn = 1.
3: Let (w?1:n, λ

?) be the solutions to the saddle point problem given by

F (w1:n, λ) =

n∑
i=1

cifi(wi, λ). (5.11)

4: Let τ?i = fi(w
?
i , λ

?).
5: If

∑n
i=1 ciτ

?
i ≤ 5V/α, output w?1:n.

6: Otherwise, update ci ← ci · (1− τ?i /τmax), where τmax = maxi τi. Go back to line 3.
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The key observation for analyzing Algorithm 7 is that
∑
i∈S ciτ

?
i ≤ V . To see this, note that

∑
i∈S

ciτ
?
i ≤

∑
i∈S

τ?i (5.12)

(i)
=
∑
i∈S

min
wi∈H

fi(wi, λ
?) (5.13)

≤ max
λ∈Λ

∑
i∈S

min
wi∈H

fi(wi, λ) (5.14)

(ii)
= min

wi∈H
max
λ∈Λ

∑
i∈S

fi(wi, λ) = V. (5.15)

Here the two key steps are (i), which exploits the form (5.1) (in particular, the fact that the wi are

optimized independently for a fixed value of λ); and (ii), which is Sion’s minimax theorem.

Since by assumption
∑n
i=1 ciτ

?
i ≥ 5V/α whenever we update the ci, we thus have that

∑
i∈S ciτ

?
i ≤

α
5

∑n
i=1 ciτ

?
i . Re-arranging, we obtain

∑
i∈S ciτ

?
i ≤ α

5−α
∑
i6∈S ciτ

?
i ≤ α

4

∑
i 6∈S ciτ

?
i . This is sufficient

for the τ?i to yield an effective filter similarly to Lemma 1.5. We state this result below:

Lemma 5.6. Suppose that τi is any quantity such that
∑
i∈S ciτi ≤

α
4

∑
i 6∈S ciτi, where α = |S|/n.

Then, the update ci ← ci(1− τi/τmax) preserves the invariant (I) defined by

∑
i∈S

(1− ci) ≤
α

4

∑
i6∈S

(1− ci). (I)

In other words, if (I) holds before the update, it will continue to hold after it.

Note that Lemma 5.6 is just Lemma 1.5 but with different constants. We are now ready to prove

Theorem 5.4.

Proof of Theorem 5.4. Since the invariant (I) holds at the beginning of Algorithm 7, by Lemma 5.6

it also holds when we output w?1:n. Therefore, we have
∑
i∈S(1− ci) ≤ α

4

∑
i 6∈S(1− ci) ≤ α(1−α)

4 n.

Therefore, ci ≤ 1
2 for at most α(1−α)

2 n elements of S. Let S′ be the set of at least α(1+α)
2 n remaining

elements in S for which ci ≥ 1
2 . Then we have

max
λ∈Λ

∑
i∈S′

fi(w
?
i , λ)

(i)

≤ 2 max
λ∈Λ

∑
i∈S′

cifi(w
?
i , λ) (5.16)

(ii)

≤ 2 max
λ∈Λ

n∑
i=1

cifi(w
?
i , λ) (5.17)

= 2

n∑
i=1

cifi(w
?
i , λ

?) ≤ 10V/α. (5.18)

Here (i) is because ci ≥ 1
2 for i ∈ S′, while (ii) is by the non-negativity of the fi. This yields the

desired result.
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5.2.1 Applications of Theorem 5.4

We next apply Theorem 5.4 to Examples 5.1 and 5.2. Recall that in both examples we are given a

matrix X = [x1 · · · xn] ∈ Rd×n and wish to approximately reconstruct some subset of its columns.

To aid us in this, we will assume that for some subset S of the columns, the covariance of the xi is

bounded: 1
|S|
∑
i∈S(xi − µ)(xi − µ)> � σ2I.

In addition to the matrix reconstruction results, we will obtain obtain results for robust mean

estimation as a corollary of analyzing Example 5.2. (We can obtain such results from Example 5.1 as

well, but the argument is more complicated so we omit it.)

5.2.2 Matrix Reconstruction (Example 5.1)

Recall that in X = [x1 · · · xn] ∈ Rd×n, we wished to minimize ‖X −XW‖22 and accordingly defined

fi(wi, Y ) = (xi−Xwi)>Y (xi−Xwi). Here wi ∈ H is constrained to satisfy
∑
j wij = 1, 0 ≤ wij ≤ 1

αn ;

the matrix Y ∈ Λ must satisfy Y � 0, tr(Y ) = 1. Note that maxY ∈Λ
∑n
i=1 fi(wi, Y ) = ‖X −XW‖22.

Suppose there is a set S of αn points satisfying 1
|S|
∑
i∈S(xi−µ)(xi−µ)> � σ2I, where µ = 1

|S|xi

is the mean of S. Then by taking w̃ij = I[j∈S]
|S| , we obtain Xw̃i = µ, and hence

max
tr(Y )≤1,Y�0

∑
i∈S

fi(w̃i, Y ) = max
tr(Y )≤1,Y�0

∑
i∈S

(xi − µ)>Y (xi − µ) = ‖[xi − µ]i∈S‖22 ≤ αnσ2. (5.19)

Therefore, V ≤ αnσ2, and Theorem 5.4 thus yields a set S′ ⊆ S and W ? = [w?1 · · · w?n] such that

‖[xi −Xw?i ]i∈S′‖22 ≤ O(nσ2).

5.2.3 Low-Rank Approximation (Example 5.2)

As before, suppose we are given a matrix X = [x1 · · · xn] ∈ Rd×n with a subset S of good columns

of covariance at most σ2. In Example 5.2 we wished to minimize ‖X −W‖22 + γ‖W‖2∗, where ‖ · ‖∗
denotes the nuclear norm. We accordingly define fi(wi, Y, Z) = (xi − wi)>Y (xi − wi) + γ〈wi, zi〉
with Λ = {(Y,Z) | Y � 0, tr(Y ) ≤ 1, ‖Z‖2 ≤ 1}. Note that for i ∈ S, the fi depend only on good

data points xi, while for i 6∈ S the fi are influenced by outliers. We will show:

Corollary 5.7. Let W ? be the output of Algorithm 7, and define r = maxw∈H ‖w‖2. For appropriately

chosen functions fi, there is a set S′ with |S′| ≥ α(1+α)
2 |S| such that

‖XS′ −W ?
S′‖22 ≤ O(nσ2) and ‖W ?

S′‖∗ ≤ O(r
√
n/α), (5.20)

Proof. An obstacle to applying Theorem 5.4 is that the 〈wi, zi〉 term could be negative. However, we

can avoid this by instead defining

fi(wi, Y, Z) = (xi − wi)>Y (xi − wi) + γmax(〈wi, zi〉, 0). (5.21)
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Since we can always set zi = 0, this does not affect the value of the maximum, but ensures that the

fi are all non-negative. Moreover, setting wi = µ, we obtain

max
(Y,Z)∈Λ

∑
i∈S

fi(µ, Y, Z) = max
tr(Y )≤1,Y�0,‖Z‖2≤1

∑
i∈S

(xi − µ)>Y (xi − µ) + γmax(〈µ, zi〉, 0) (5.22)

= ‖[xi − µ]i∈S‖22 + γ‖[µ]i∈S‖∗ ≤ αnσ2 + γ
√
αn‖µ‖2. (5.23)

Letting r = maxw∈H ‖w‖2, Theorem 5.4 yields a matrix W ? and set S′ for which ‖XS′ −W ?
S′‖22 +

γ‖W ?
S′‖∗ ≤ O(nσ2 + γr

√
n/α). We now apply a standard trick of setting γ to balance the two terms;

in this case, γ = nσ2

r
√
n/α

. Since both terms are non-negative, we then obtain ‖XS′ −W ?
S′‖22 ≤ O(nσ2)

and ‖W ?
S′‖∗ ≤ O(r

√
n/α), as claimed.

Consequence for mean estimation. We can use the above result to obtain estimates of the mean

µ with error O(σ/α1.5). A key fact about the nuclear norm (which is why it is a good proxy for matrix

rank) is that for any matrix W ? there is a rank-k matrix Ŵ such that ‖W ? − Ŵ‖2 ≤ ‖W ?‖∗/k (for

instance, we can take Ŵ to be the top k components of the singular value decomposition). Applying

this here, we can obtain a Ŵ with rank k such that ‖XS′ − ŴS′‖22 ≤ O(nσ2 + nr2/(αk2)).

Let U = µ1> be a matrix whose columns are all µ. Since by assumption ‖XS′ − US′‖22 ≤
‖XS − US‖22 ≤ αnσ2, we then have

‖US′ − ŴS′‖2F ≤ rank(U − Ŵ ) · ‖US′ − ŴS′‖22 (5.24)

≤ (k + 1) · O(nσ2 + nr2/(αk2)) = O(nkσ2 + nr2/(αk)). (5.25)

By taking k = Θ(1/α2), we obtain ‖US′ − ŴS′‖2F ≤ O(nσ2/α2) + 1
10αr

2. This means that on average

across S′, the squared distance between ŵi and µ is at most O(σ2/α3) + r2/5. This is better than

the näıve bound of r2 by a constant factor, and in fact by iterating this result we can eventually

reach a squared distance of O(σ2/α3), which gives us an approximation to the mean with `2-distance

O(σ/α1.5). We defer the details of this iterative algorithm to Section 5.3.2, where we also obtain a

better bound of Õ(σ/α0.5) via a more sophisticated algorithm.

5.3 Better Approximations via Dual Coupling Inequalities

In the previous section, we saw how to obtain a O(1/α)-approximation to the optimum if each of

the fi are non-negative. This result has two weaknesses. First, it only applies to non-negative fi.

Second, if the optimal value V is large compared to typical devitations from the optimum, then a
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O(1/α)-approximation may be meaningless. For instance, consider the function

1

n

n∑
i=1

‖xi − w‖22, (5.26)

where the xi are sampled from a normal distribution N (µ, I). Then if we set w = µ for all i, the

value of (5.26) is roughly d. On the other hand, if we set w = µ+ ∆ for some ∆, the value will be

roughly d + ‖∆‖22. Thus while the optimum of (5.26) is d, we would need bounds of d + O(1) to

obtain good control over ‖∆‖2.

To solve this, in this section we present an improvement of Algorithm 7 that can handle fi taking

negative values and that can give tight bounds even when the optimal cost V is large.

Our approach is to couple the potentially negative functions fi with non-negative regularization

functions Ri. Specifically, given functions f1, . . . , fn : H → R, we seek non-negative functions

R1, . . . , Rn : H×Λ→ R satisfying the following property:

Definition 5.8 (Dual coupling property). For a set S and functions fi, the functions Ri are said to

possess the dual coupling property relative to target parameters wi if

∑
i∈S

ci(fi(wi)− fi(wi)) ≤ β
(

max
λ∈Λ

n∑
i=1

ciRi(wi, λ)

)1/s

+ γ (5.27)

for all wi ∈ H, λ ∈ Λ, and ci ∈ [0, 1], and some s > 1.

In addition to the parameters s, β, and γ, define ζ = maxλ∈Λ
∑
i∈S Ri(wi, λ). We then say that

the Ri possess the dual coupling property with parameters (s, β, γ, ζ). Typically we will take s = 2,

but later corollaries will consider larger values of s as well.

As an example of the self-bounding property, suppose that fi(wi) = ‖wi − xi‖22. Then fi(wi)−
fi(wi) = ‖wi − xi‖22 − ‖wi − xi‖22 = 2〈wi − wi, xi − wi〉 − ‖wi − wi‖22. It then suffices to find

regularizers Ri that upper bound 2
∑
i∈S ci〈wi − wi, xi − wi〉. A general recipe for doing so is the

following: First, upper-bound the sum by a sum of non-negative functions involving the xi. For

instance, using Cauchy-Schwarz we can upper bound the sum in terms of
∑
i∈S ci〈wi −wi, xi −wi〉2.

Second, replace the xi term by a variable λi, and use a-priori knowledge about the xi to constrain the

space Λ of feasible λ1:n. In this case, assuming that
∑
i∈S(xi − wi)(xi − wi)> � σ2I, we can replace

〈wi−wi, xi−wi〉2 with (wi−wi)>Zi(wi−wi), where Z1:n ∈ Λ are constrained to satisfy
∑
i Zi � σ2I.

A complication is that we do not know wi, but since it is a constant we can fold it into the γ term,

and define Ri(wi, Z1:n) = w>i Ziwi. We carry out this analysis in detail in Proposition 5.10 below.

Note that the fi are no longer allowed to depend on the dual variable λ. This is a drawback of

the dual coupling approach (though we hold hope that future techniques may circumvent it).

The main result in this section says that we can recover parameters ŵi for which the fi(ŵi) are

close in value to fi(wi), and moreover the Ri are small.
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Theorem 5.9. Let H and Λ be convex compact sets. Suppose that f1, . . . , fn : H → R are convex in

H and that R1, . . . , Rn : H×Λ→ R are non-negative, convex in H, and concave in Λ. For target

parameters wi, suppose the Ri possess the dual coupling property with parameters (s, β, γ, ζ). Then

there is an algorithm (Algorithm 8) outputting parameters ŵ1, . . . , ŵn such that

∑
i∈S

ci(fi(ŵi)− fi(wi)) ≤ O(γ + β · (ζ/α)1/s) and max
λ∈Λ

∑
i∈S

ciRi(ŵi, λ) ≤ O(ζ/α), (5.28)

where the ci ∈ [0, 1] satisfy
∑
i∈S(1− ci) ≤ α(1−α)

4 n.

Note that the bound (5.28) on fi(ŵi)− fi(wi) depends only on the parameters (s, β, γ, ζ) and not

on the magnitude of the fi. This will allow us to obtain good bounds even when the fi themselves

are large and potentially negative.

Algorithm 8 is given below:

Algorithm 8 RegularizedDualFilter

1: Input: functions f1, . . . , fn, regularizers R1, . . . , Rn.
2: Initialize weights c1, . . . , cn = 1.
3: Let (w?1:n, λ

?) be the solutions to the saddle point problem given by

F (w1:n, λ) =

n∑
i=1

ci(fi(wi) + κRi(wi, λ)), where κ = γ/ζ + β/(α
1
s ζ

s−1
s ). (5.29)

4: Let τ?i = Ri(w
?
i , λ

?).
5: If

∑n
i=1 ciτ

?
i ≤ 5

α

(
β
κ (
∑n
i=1 ciτ

?
i )1/s + γ

κ + ζ
)
, output w?1:n.

6: Otherwise, update ci ← ci · (1− τ?i /τmax), where τmax = maxi τi. Go back to line 3.

Proof of Theorem 5.9. To analyze Algorithm 8, we first need to bound the τ?i . We have

∑
i∈S

ciτ
?
i =

∑
i∈S

ciRi(w
?
i , λ

?) (5.30)

(i)

≤
∑
i∈S

ci
[ 1

κ
(fi(wi)− fi(w?i )) +Ri(wi, λ

?)
]

(5.31)

(ii)

≤ β

κ

( n∑
i=1

ciRi(w
?
i , λ

?)

)1/s

+
γ

κ
+
∑
i∈S

ciRi(wi, λ
?) (5.32)

(iii)

≤ β

κ

( n∑
i=1

ciRi(w
?
i , λ

?)

)1/s

+
γ

κ
+ ζ, (5.33)

where (i) is by the optimality of w?i relative to wi for the functions fi + κRi, (ii) is by the dual

coupling property and the fact that λ? maximizes
∑n
i=1 ciRi(w

?
i , λ), and (iii) is by the definition of

ζ. We thus have that
∑
i∈S ciτ

?
i ≤

β
κ (
∑n
i=1 ciτ

?
i )1/s + γ

κ + ζ ≤ α
5

∑n
i=1 ciτ

?
i , and hence we can apply
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Lemma 5.6 as before to obtain that
∑
i∈S(1 − ci) ≤ α

4

∑
i 6∈S(1 − ci) throughout the execution of

Algorithm 8.

Now, when Algorithm 8 terminates, we have z ≤ 5
α

(
β
κz

1/s + γ
κ + ζ), where z =

∑n
i=1 ciRi(w

?
i , λ

?).

Inverting the inequality yields z = O(( β
ακ )

s
s−1 + γ

ακ + ζ
α ). By the non-negativity of the Ri, we have

max
λ∈Λ

∑
i∈S

ciRi(w
?
i , λ) ≤ max

λ∈Λ

n∑
i=1

ciRi(w
?
i , λ) =

n∑
i=1

ciRi(w
?
i , λ

?) = z (5.34)

as well. It remains to bound
∑
i∈S ci(fi(w

?
i )− fi(wi)). By the optimality of w?i at λ?, we have

∑
i∈S

ci(fi(w
?
i )− fi(wi)) ≤ κ

∑
i∈S

ci(Ri(wi, λ
?)−Ri(w?i , λ?)) (5.35)

(i)

≤ κ
∑
i∈S

Ri(wi, λ
?)

(ii)

≤ κζ, (5.36)

where (i) is the non-negativity of Ri and (ii) is the definition of ζ. Plugging in κ = γ
ζ + β

α (αζ )
s−1
s to

(5.34) and (5.36) yields the desired result.

5.3.1 Application: Robust Stochastic Optimization

We next discuss applications of Theorem 5.9. Suppose, as in Section 4.3, that the functions fi satisfy

1

|S|
∑
i∈S

(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))> � σ2I for all w ∈ H. (5.37)

We will construct a regularizer that has the dual coupling property for the fi. Let Λ = {(Z1, . . . , Zn) |
Zi � 0,

∑n
i=1 Zi � I} and Ri(wi, λ) = w>i Ziwi. Then the Ri satisfy dual coupling with respect to

the fi:

Proposition 5.10. Suppose that the fi are convex and satisfy the bound (5.37). Also let w =

arg minw∈H
∑
i∈S fi(w) and r = maxw∈H ‖w‖2. Then

∑
i∈S

ci(fi(w)− fi(wi)) ≤ αnσ
(

max
Z1:n∈Λ

n∑
i=1

ciw
>
i Ziwi

)1/2

+ 3αnσr. (5.38)

Moreover,
∑
i∈S w

>Ziw ≤ r2 for all Z1:n ∈ Λ. In particular, the functions Ri(wi, Z1:n) = w>i Ziwi

possess the dual coupling property with parameters s = 2, β = αnσ, γ = 3αnσr, and ζ = r2.

Proof. Let w̃ =
∑
i∈S ciwi/

∑
i∈S ci. Using (5.37) and the optimality of w, we can show that

∑
i∈S

ci(fi(w)− fi(w̃)) ≤ αnσ‖w − w̃‖2. (5.39)
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See Section D.1 for details. Next, we have

∑
i∈S

ci(fi(w̃)− fi(wi))
(i)

≤
∑
i∈S

ci〈∇fi(w̃), w̃ − wi〉 (5.40)

(ii)
=
∑
i∈S

ci〈∇fi(w̃)−∇f̄(w̃), w̃ − wi〉 (5.41)

(iii)

≤
(∑
i∈S

ci

)1/2( n∑
i=1

ci(w̃ − wi)>(∇fi(w̃)−∇f̄(w̃))(∇fi(w̃)−∇f̄(w̃))>(w̃ − wi)︸ ︷︷ ︸
A

)1/2

.

(5.42)

Here (i) is by convexity of the fi, (ii) uses the fact that
∑
i∈S ci(w̃ − wi) = 0, and (iii) is Cauchy-

Schwarz. Now, we know that
∑
i∈S(∇fi(w̃) − ∇f̄(w̃))(∇fi(w̃) − ∇f̄(w̃))> � αnσ2I by (5.37).

Therefore, the term A1/2 in (5.42) is bounded by

A1/2 ≤ (αnσ2)1/2 max
Z1:n∈Λ

(∑
i∈S

ci(w̃ − wi)>Zi(w̃ − wi)
)1/2

(5.43)

≤ (αnσ2)1/2 max
Z1:n∈Λ

((∑
i∈S

ciw
>
i Ziwi

)1/2
+
(∑
i∈S

ciw̃
>Ziw̃

)1/2)
(5.44)

≤ (αnσ2)1/2
((

max
Z1:n∈Λ

n∑
i=1

ciw
>
i Ziwi

)1/2
+ ‖w̃‖2

)
. (5.45)

Combining with (5.39) and (5.42) and using
∑
i∈S ci ≤ αn, , we obtain

∑
i∈S ci(fi(w)− fi(wi)) ≤

αnσ((
∑n
i=1 ciw

>
i Ziwi)

1/2 + ‖w̃‖2 + ‖w − w̃‖2). The functions Ri(wi, Z1:n) = w>i Ziwi thus possess

the dual coupling property for target parameters wi = w with s = 2, β = αnσ, γ = αnσ(‖w − w̃‖2 +

‖w̃‖2) ≤ 3αnσr. Moreover, we have ζ = maxZ1:n∈Λ
∑
i∈S w

>Ziw ≤ ‖w‖22 ≤ r2, as claimed.

Since Proposition 5.10 establishes dual coupling of Ri with fi, we can apply Theorem 5.9 to

obtain:

Corollary 5.11. If the fi are convex and satisfy (5.37), and Ri(wi, Z1:n) = w>i Ziwi, then Algo-

rithm 8 outputs parameters ŵ1, . . . , ŵn satisfying

∑
i∈S

ci(fi(ŵi)− fi(w))/
∑
i∈S

ci ≤ O(σr/
√
α), (5.46)

max
Z1:n∈Λ

∑
i∈S

ciŵ
>
i Ziŵi ≤ O(r2/α). (5.47)

Moreover, if w̃ =
∑
i∈S ciŵi/

∑
i∈S ci, then

∑
i∈S ci(fi(w̃)− fi(w))/

∑
i∈S ci ≤ O(σr/

√
α) as well.

Proof. We apply Theorem 5.9, which states that
∑
i∈S ci(fi(ŵi) − fi(w)) ≤ O(γ + β · (ζ/α)1/s =

3αnσr + αnσ(r2/α)1/2) = O(αn · σr/
√
α). Moreover,

∑
i∈S ci ≥ 3αn/4. Combining these yields the
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first inequality. The second inequality also follows from Theorem 5.9 upon noting that ζ/α = r2/α.

Finally, applying (5.42) and (5.45) implies that
∑
i∈S ci(fi(w̃) − fi(ŵi)) ≤ O(αn · σr/

√
α), which

gives the final inequality.

5.3.2 Consequence for Mean Estimation

As a particular case of Corollary 5.11, suppose we take fi(wi) = ‖wi − xi‖22. Then the minimizer

w of
∑
i∈S fi(w) is µ = 1

|S|
∑
i∈S xi. In addition, ∇fi(w) −∇f̄(w) = xi − µ. Therefore, σ2 is the

maximum eigenvalue of the matrix 2
|S|
∑
i∈S(xi−µ)(xi−µ)>. We then obtain that 1

C

∑
i∈S ci(‖ŵi−

xi‖22 − ‖µ− xi‖22) = O(σr/
√
α), where C =

∑
i∈S ci. But we can also write

1

C

∑
i∈S

ci‖ŵi − µ‖22 =
1

C

∑
i∈S

ci(‖ŵi − xi‖22 − ‖µ− xi‖22 + 2〈ŵi − xi, µ− xi〉) (5.48)

≤ O(σr/
√
α) +

2

C

∑
i∈S

ci〈ŵi − xi, µ− xi〉 (5.49)

≤ O(σr/
√
α) + 2

√
1

C

∑
i∈S

(ŵi − xi)>(µ− xi)(µ− xi)>(ŵi − xi) (5.50)

= O(σr/
√
α). (5.51)

This shows that the ŵi are close to µ for most elements of S, with a typical distance of O(
√
σr/
√
α).

Unfortunately, this distance depends on the radius r of the space. However, we can remove this

dependence by iteratively re-centering around our current estimate µ̂ of µ and re-running Algorithm 8.

We split into two cases based on whether α is large or small.

Case 1: α ≥ 0.55. In this case, let µ̂ =
∑n
i=1 ciŵi/

∑n
i=1 ci. Then using the bound (5.51), we can

show (see Section D.2) that ‖µ̂− µ‖2 ≤ O(
√
σr) + 0.96r. As long as r � σ, we can re-center around

µ̂ and re-run the algorithm in a space of smaller radius r′ = O(
√
σr) + 0.96r < r. Running this until

convergence yields:

Proposition 5.12. If the xi have covariance at most σ2 around their mean µ, and ε ≤ 0.45, then

there is a procedure that outputs an estimate µ̂ of µ satisfiying ‖µ̂− µ‖2 = O(σ).

The O(σ) bound can be further improved to O(σ
√
ε) by searching for a set that has bounded

covariance around µ̂. We leave this as an exercise (Exercise 2).

Case 2: general α. By (5.51), there must be some ŵi such that ‖ŵi − µ‖2 = O(
√
σr/
√
α). By

Corollary 2.16, we can output a list L of at most 4
α of the ŵi such that ‖ŵi − µ‖2 = O(

√
σr/
√
α+

σ
√

log(2/α)/α) for some i ∈ L.

We can then re-run Algorithm 8 centered around each of the ŵi (for i ∈ L), with a smaller radius

r′ = O(
√
σr/
√
α+σ

√
log(2/α)/α). We will now have up to 4n/α candidate parameters (n for each of
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the 4/α runs of the algorithm), such that at least one is within distance O(
√
σr′/
√
α+σ

√
log(2/α)/α)

of µ. We can again use Corollary 2.16 to narrow down to a list of at most 4
α of the ŵi. Iterating

this until convergence, we will eventually end up with at most 4
α candidates such that one is within

O(σ
√

log(2/α)/α) of µ. This yields:

Proposition 5.13. If the xi have covariance at most σ2 around their mean µ, then there is a procedure

that outputs estimates µ̂1, . . . , µ̂m of µ with m ≤ 4
α and minmj=1 ‖µ̂j − µ‖2 = O

(
σ
√

log(2/α)
α

)
.

5.3.3 Better Bounds via Sum-of-Squares Relaxations

As a final application of Theorem 5.9, we show how to obtain better estimates of the mean assuming

control over higher moments of the xi. To do this, we will need to make use of a tool called sum-of-

squares relaxations to obtain efficient algorithms. Roughly, we will show that if the 2tth moments

of the xi have bounded sum-of-squares norm (which is a relaxation of the spectral norm) then we

can estimate the mean with error Õ(σ/α1/2t). We first go over preliminaries around sum-of-squares

(SOS) relaxations, then present our assumptions and algorithm.

Sum-of-squares preliminaries. Let R[v] denote the space of real-valued polynomials in v, and

P2t ⊆ R[x] denote the polynomials of degree at most 2t. We will call a linear functional E : P2t → R
a degree-2t pseudodistribution over the unit sphere if it satisfies the following properties:

E[p(v)2] ≥ 0 for all polynomials p(v) of degree at most t, (5.52)

E[1] = 1, (5.53)

E[(‖v‖22 − 1)p(x)] = 0 for all polynomials p(v) of degree at most 2t− 2. (5.54)

The constraints (5.52) and (5.53) ask that E behaves similarly to the expectation under a probablity

distribution: the square of any polynomial should have non-negative “expected value” under E,

and the constant function should have a value of 1. The constraint (5.54) asks E to act as if its

probability mass is supported on the unit sphere (as then ‖x‖22−1 = 0). In particular, any probability

distribution over the unit sphere will have an expectation operator E that satisfies (5.52-5.54), but

there are potentially many other E that satisfy these constraints as well. We let D2t denote the

set of linear functionals satisfying (5.52) and (5.53), and let S2t ⊆ D2t denote the set of linear

functionals that further satisfy (5.54). It is a standard result that one can optimize over S2t and D2t

in polynomial time (see e.g. Barak and Steurer (2016)).

Sum-of-squares norm. Given an order-2t tensor T , we can define a polynomial pT (v) = 〈T, v⊗2t〉.
We define the SOS-norm as ‖T‖sos−2t = max{E[pT (v)] | E ∈ S2t}; in other words, ‖T‖sos−2t is the

maximum “expectation” of 〈T, v⊗2t〉 over all pseudodistributions on the unit sphere. Note that
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‖T‖sos−2t is a relaxation of the injective norm of T , i.e.

‖T‖sos−2t ≤ max
‖v‖2≤1

〈T, v⊗2t〉. (5.55)

It turns out that for t = 1, (5.55) holds with equality, i.e. ‖T‖sos−2 = λmax(T ) when T is a matrix.

Assumption: bounded SOS-norm. Given data x1, . . . , xn ∈ Rd, we will assume that there is a

set S of αn good points with mean µ such that the 2t-th moment tensor has bounded SOS-norm:

‖M2t‖sos−2t ≤ σ2t, where M2t
def
=

1

|S|
∑
i∈S

(xi − µ)⊗2t. (5.56)

This is a generalization of the bounded-covariance assumption from before. Since the SOS-norm is

larger than the injective norm, this is stronger than assuming that M2t has bounded injective norm

(or equivalently, that the xi have bounded 2t-th moment). However, there are many distributions

p for which samples from p will satisfy (5.56). For instance, Kothari and Steinhardt (2018) show

that this holds whenever p satisfies the Poincaré inequality, which includes Gaussian distributions,

log-concave distributions, and any Lipschitz function of a log-concave distribution.

Algorithm. We start with some notation. Recall from before that given a tensor T , we can define

the polynomial pT (v) = 〈T, v⊗2t〉. However, we can also define the pseudodistribution ET such that

ET [pT ′ ] = 〈T, T ′〉. This gives us two dual viewpoints on a tensor T : as a polynomial, and as a

pseudodistribution. Finally, for a vector u we define the polynomial pu(w)
def
= pu⊗2t(w) = 〈u,w〉2t.

Assuming that (5.56) holds, we will apply Algorithm 8 with fi(wi) = ‖wi−xi‖22 and Ri(wi, Z1:n) =

〈Zi, v⊗2ti 〉, where now the Zi ∈ R⊗2t are order-2t tensors. The space Λ of admissible Zi is defined as

Λ =
{

(Z1, . . . , Zn) | EZi
∈ D2t, ‖

n∑
i=1

Zi‖sos−2t ≤ 1
}
. (5.57)

In other words, the Zi must correspond to valid pseudodistributions (not necessarily over the unit

sphere), and their sum must have bounded SOS-norm. Note that when t = 1, fi and Ri are the same

as in Section 5.3.2. As with D2t, we can optimize over Λ in polynomial time.

Applying Algorithm 8 with the fi, Ri, and Λ given above, we obtain:

Proposition 5.14. Suppose that x1, . . . , xn contain a set S of size αn with mean µ for which

M2t = 1
|S|
∑
i∈S(xi−µ)⊗2t satisfies ‖M2t‖sos−2t ≤ σ2t. Then there is an efficient algorithm outputting

parameters µ̂1, . . . , µ̂m with m ≤ 4/α and minmj=1 ‖µ̂j − µ‖2 = O
(
σ
(

log(2α)
α

)1/2t)
.

Note that in comparison to Proposition 5.13, the
(

log(2/α)
α

)1/2
factor is replaced by a

(
log(2/α)

α

)1/2t
factor. The bounded SOS-norm assumption thus enabled mean estimation with better dependence
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on the fraction α of good points.

Proof of Proposition 5.14. We will apply Theorem 5.9 to the fi and Ri given above, with wi = µ.

A technicality is that we need the Ri to be convex in w, i.e. we need 〈Zi, (cv + (1 − c)w)⊗2t〉 ≤
〈Zi, cv⊗2t + (1− c)w⊗2t〉. An equivalent condition is EZi

[cpv + (1− c)pw − pcv+(1−c)w] ≥ 0. But the

polynomial cpv + (1 − c)pw − pcv+(1−c)w can be written as a sum of squares of other polynomials

(Frenkel and Horváth, 2014), whence the desired inequality follows from EZi ∈ D2t.

We now turn to the dual coupling property. We can bound ζ by noting that for the target

parameters wi = µ, we have

∑
i∈S

Ri(wi, Z1:n) =
∑
i∈S
〈Zi, µ⊗2t〉 (5.58)

= ‖µ‖2t2 〈
∑
i∈S

Zi, (µ/‖µ‖2)⊗2t〉 (5.59)

(i)

≤ ‖µ‖⊗2t2 ≤ r2t, (5.60)

where (i) is because ‖
∑
i Zi‖sos−2t ≤ 1 and the operator p 7→ p(µ/‖µ‖2) is a valid pseudodistribution

over the unit sphere. Thus we can take ζ = r2t.

Next, we relate fi to Ri for the dual coupling property. We have

∑
i∈S

ci(fi(wi)− fi(wi)) =
∑
i∈S

ci(‖µ− xi‖22 − ‖wi − xi‖22) (5.61)

≤ 2
∑
i∈S

ci〈µ− wi, µ− xi〉 (5.62)

(ii)

≤ 2αnσ‖µ‖2 − 2
∑
i∈S

ci〈wi, µ− xi〉 (5.63)

(iii)

≤ 2αnσ‖µ‖2 + 2
(∑
i∈S

ci

) 2t−1
2t
(∑
i∈S

ci〈wi, µ− xi〉2t
) 1

2t

(5.64)

= 2αnσ‖µ‖2 + 2
(∑
i∈S

ci

) 2t−1
2t
(
αnσ2t

∑
i∈S

ci〈Ẑi, w⊗2ti 〉
) 1

2t

(5.65)

≤ 2αnσ‖µ‖2 + 2αnσ
(∑
i∈S

ciRi(wi, Ẑ1:n)
) 1

2t

, (5.66)

where Ẑi = (µ− xi)⊗2t/αnσ2t. Here (ii) is because bounded SOS-norm implies bounded covariance

(which in turn bounds ‖
∑
i ci(µ− xi)‖2), and (iii) is Hölder’s inequality.

We need to ensure that the Ẑ1:n ∈ Λ. We have
∑
i∈S Ẑi = 1

αnσ2t

∑
i∈S(xi − µ)⊗2t = M2t/σ

2t,

and ‖M2t/σ
2t‖sos−2t = ‖M2t‖sos−2t/σ2t ≤ 1. Therefore, we indeed have Ẑ1:n ∈ Λ.

The dual coupling property thus holds with s = 2t, β = 2αnσ, γ = 2αnσr, and ζ = r2t. Applying
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Theorem 5.9, the output of Algorithm 8 satisfies

∑
i∈S

ci(‖ŵi − xi‖22 − ‖µ− xi‖22) ≤ O(αnσr/α1/2t). (5.67)

As before, we can use this to conclude that

1

C

∑
i∈S

ci‖ŵi − µ‖22 ≤ O(rσ/α1/2t), where C =
∑
i∈S

ci. (5.68)

Using the same recursive procedure as in Section 5.3.2, we then eventually end up with parameters

µ̂1, . . . , µ̂m with m ≤ 4/α and minmj=1 ‖µ̂j − µ‖2 = O
(
σ
(

log(2/α)
α

)1/2t)
.

5.4 Bibliographic Remarks

The duality-based approach to robust estimation was first introduced in Charikar et al. (2017). That

work used the dual coupling approach specialized to the setting in Section 5.3.1, although it employed

a more complicated algorithm and argument than the one given here. The saddle point formulation

from Section 5.2 actually appeared later, in in Steinhardt et al. (2018). That work uses a matrix

reconstruction objective along the lines of Example 5.1 to obtain bounds for mean estimation. The

saddle point formulation was also used in Kothari and Steinhardt (2018) to obtain mean estimation

results using sum-of-squares algorithms. The sum-of-squares results presented here are in general

stronger than those in Kothari and Steinhardt (2018), as they make use of the stronger dual coupling

bounds given by Theorem 5.9.

Multiple previous papers (Charikar et al., 2017; Kothari and Steinhardt, 2018) make use of an

iterative re-clustering algorithm to obtain stronger bounds. This general re-clustering approach

has been streamlined here through the use of Algorithm 3 for finite norms and the resulting

Corollary 2.16. Previous re-clustering techniques sometimes used substantially more complex analysis,

e.g. the approach in Charikar et al. (2017) makes use of metric embeddings. On the other hand,

Corollary 2.16 does not provide an immediate way to obtain better results as the fraction ε of outliers

approaches 0, which is a disadvantage relative to the approach in Kothari and Steinhardt (2018).

Similarly to Corollary 2.16, the approach in Kothari and Steinhardt (2018) also works by finding

resilient sets.

5.5 Exercises

1. Suppose that we are given a matrix X ∈ Rd×n such that ‖XS − W̄S‖22 ≤ O(|S|σ2) for some

subset S ⊆ [n] of size αn. Here W̄S is an unknown matrix with the guarantee that the nuclear

norm ‖W̄S‖∗ is at most ρ.
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(a) [2] The matrix Hölder’s inequality states that 〈A,B〉 ≤ ‖A‖2‖B‖∗. Use this to obtain a

dual coupling inequality with exponent s = 1, for the function fi(wi) = ‖xi −wi‖22. (Hint:

use the regularizer Ri(wi, Z) = max(〈wi, zi〉, 0) with the constraint ‖Z‖2 ≤ 1.)

(b) [1+] Theorem 5.9 requires s > 1. Show, nevertheless, that an analog of Theorem 5.9 holds

even when s = 1, provided that we set the regularization constant κ to be large enough.

(c) [1+] Use (a) and (b) to obtain an algorithm that recovers a Ŵ for which ‖ŵi − wi‖22 is

small on average on a large subset S′ of S.

(d) [2] Using the regularizer Ri(wi, Z1:n) = w>i Ziwi from Section 5.3.1, can you obtain a dual

coupling inequality with s = 2?

2. Suppose that we are in the typical mean estimation scenario where we are given x1, . . . , xn ∈ Rd,
and an unknown subset of (1 − ε)n of the points have covariance at most σ2 around their

mean µ. Suppose further that we are given a list of candidate means µ̂1, . . . , µ̂m such that

‖µ̂j − µ‖2 ≤ σ for some j. In this exercise we will show that we can then obtain an estimate µ̂

such that ‖µ̂− µ‖2 ≤ O(σ
√
ε).

(a) [1+] For any vector v, consider the optimization problem

min
0≤ci≤1,

∑
i ci≥(1−ε)n

F (c; v), where F (c; v) = λmax

( n∑
i=1

ci(xi − v)(xi − v)>
)
. (5.69)

Show that F (c; v) is convex in c.

(b) [2−] Suppose that for any v, F (c; v) ≤ O(σ2). Let S = {i | ci ≥ 1
2}. Show that S is

(O(σ
√
ε), ε)-resilient and that |S| ≥ (1− 2ε)n.

(c) [1+] Using the results of (a) and (b), show that given the list µ̂1, . . . , µ̂m, we can obtain a

single estimate µ̂ with ‖µ̂− µ‖2 ≤ O(σ
√
ε).

3. Consider a distribution learning problem: we are given data points x1, . . . , xn ∈ {1, . . . ,m},
where an unknown subset S of αn of the points have empirical probability distribution π. Our

goal is to recover a distribution w that approximates π. We represent w and π as functions

from {1, . . . ,m} to [0, 1] that sum to 1.

(a) [2+] Consider the objective function fi(wi) = − logw(xi). Show that
∑
i∈S ci(fi(π) −

fi(wi)) ≤ αn[log(
∑m
j=1 maxni=1 ciwi(j)) + 1/e].

(b) [2] Derive an analog of Theorem 5.9 showing that we can recover a probability distribution

ŵ such that the KL divergence from π to ŵ is O(log(2/α)).

(c) [1+] How meaningful is this reuslt?



Chapter 6

Discussion

We have now seen how to perform robust estimation in high dimensions, both information-theoretically

(Chapters 2 and 3) and computationally (Chapters 4 and 5). From the information-theoretic

perspective, a key takeaway is to look at populations rather than individual points, which allows us

to avoid the typical
√
d error of traditional estimators. This leads to the concept of resilience, which

gave tight characterizations of information-theoretic recoverability in many cases. Algorithmically, we

saw two techniques, based on moment estimation and duality, that enabled robust mean estimation,

robust stochastic optimization, and, through the list-decodable model, robust clustering.

While these techniques give an approach to many problems, the field is still new—there are many

unexplored questions. Both the moment estimation and duality results rely on tractable relaxations

of resilience. Unfortunately, the spectral norm of the covariance (or of higher moments) is the only

such relaxation that is currently known. This relaxation is well-suited to mean estimation, but

there are surely other yet-undiscovered relaxations more suitable for other problems. One particular

challenge problem is the semi-random stochastic block model presented in Section 3.3. The best

efficient algorithms perform far worse than the information-theoretic threshold (Charikar et al., 2017;

Steinhardt, 2017; McKenzie et al., 2018). It seems likely that no algorithm based on second moment

estimation can circumvent this, so any improvement on the known bounds will likely lead to new

algorithmic techniques. Another challenge problem is robust classification, where we are given a

(1 − ε)-fraction of (x, y) pairs that can be linearly separated by a vector w∗, and the remaining

ε-fraction of points are arbitrary outliers. Without further assumptions, robust classification is

computationally hard (Guruswami and Raghavendra, 2009; Feldman et al., 2009). However, the

known conditions that enable robust classification hew closely to the bounded covariance assumption

(Klivans et al., 2009; Awasthi et al., 2014; Diakonikolas et al., 2017b; 2018a), which is not a natural fit

for classification because points far from the decision boundary increase the covariance but intuitively

should not increase the difficulty of classification.

For mean estimation, we can hope for better dependence on ε as ε → 0. The second moment

60
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algorithms presented here achieve an O(
√
ε) dependence, but with better control over the tails one

might hope for e.g. an Õ(ε) dependence. This distinction likely matters in practice. Unfortunately,

known algorithms for surpassing
√
ε either rely strongly on Gaussian assumptions (Diakonikolas

et al., 2016), or else involve expensive sum-of-squares algorithms (Kothari and Steinhardt, 2018;

Hopkins and Li, 2018). Another shortcoming in the ε→ 0 regime is the performance of the duality

approach. Algorithm 8 in particular often does not directly produce estimates with vanishing error

as ε→ 0, and instead must rely on separate post-processing to yield good results.

Finally, while resilience helps to illuminate robust mean estimation, it does not currently apply

to more complex problems such as stochastic optimization (although see Steinhardt et al. (2018)

for an extension of resilience that handles low-rank approximation). Can we similarly characterize

information-theoretic recoverability for these problems? Moreover, how accurate is resilience as a

characterization for mean estimation? Does it always give sharp estimates, or are there problems

where the upper bound given by resilience differs substantially from the true information-theoretic

threshold? We hope that readers of this manuscript are inspired to tackle these problems, and to

propose new questions of their own.



Appendix A

Proofs for Chapter 1

A.1 Proof of Lemma 1.1

Let I[E] denote the indicator that E occurs. Then we have

|EX∼p[X | E]− µ| = |EX∼p[(X − µ)I[E]]|/P[E] (A.1)

≤
√
EX∼p[(X − µ)2I[E]] · EX∼p[I[E]]/P[E] (A.2)

≤
√
σ2 · P[E]/P[E] = σ/

√
P[E]. (A.3)

In particular, if we let E0 be the event that X ≥ µ + σ/
√
δ, we get that σ/

√
δ ≤ σ/

√
P[E0], and

hence P[E0] ≤ δ, which proves the first part of the lemma.

For the second part, if P[E] ≤ 1
2 then (A.3) already implies the desired result since σ/

√
δ ≤

σ
√

2(1− δ)/δ when δ ≤ 1
2 . If P[E] ≥ 1

2 , then consider the same argument applied to ¬E (the event

that E does not occur). We get

|EX∼p[X | E]− µ| = 1− P[E]

P[E]
|EX∼p[X | ¬E]− µ| (A.4)

≤ 1− P[E]

P[E]
· σ/

√
1− P[E]. (A.5)

Again the result follows since σ
√

1− δ/δ ≤ σ
√

2(1− δ)/δ when δ ≥ 1
2 .

A.2 Proof of Lemma 1.4

First note that if (I) holds, then most of the mass of the ci lies within S. More precisely,∑
i∈S ci/

∑n
i=1 ci ≥ 1− ε. This is because (I) ensures that the mass removed from [n]\S is greater
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than the mass removed from S, which ensures that the ratio is always at least its initial value of 1− ε.
Now, let µ̃c =

∑
i∈S cixi/

∑
i∈S ci be the weighted mean of the good points. Then |µ̂c − µ̃c| ≤

σ̂
√

2ε
1−ε by Lemma 1.1, since µ̂c is the weighted mean of all the points and µ̃c is the mean of

the at least 1 − ε fraction (under c) of remaining good points. In addition, |µ − µ̃c| ≤ σ
√

2ε
2−ε ,

since
∑
i∈S ci/|S| ≥ 1− ε

2 (here we think of µ̃c as the mean of an event occuring with probability∑
i∈S ci/|S| under the uniform distribution on |S|).
This establishes the first part of the lemma. For the second part, first note that

∑
i∈S

ciτi
(1.1)

≤ (1− ε)n · [σ2 + (µ− µ̂c)2] (A.6)

(i)

≤ (1− ε)n · [σ2 + (σ
√

2ε/(2− ε) + σ̂c
√

2ε/(1− ε))2] (A.7)

(ii)

≤ (1− ε)σ̂2
cn · [ 1

16 + 2ε · ( 1
4
√
2−ε + 1√

1−ε )
2] (A.8)

≤ 0.32(1− ε)σ̂2
cn (for ε ≤ 1/12). (A.9)

Here (i) is the first part of the lemma, and (ii) uses the assumption that σ2 ≤ σ̂2
c . The final step is

simple calculation. We also have

n∑
i=1

ciτi = σ̂2
c · (

n∑
i=1

ciτi) (A.10)

(iii)

≥ σ̂2
c · (1− 3ε/2)n ≥ 2

3
σ̂2
cn. (A.11)

Here (iii) uses (I) to conclude that at most an ε
2 -fraction of the mass is removed from S (since it is

less than half the mass removed from [n]\S and hence the total fraction of mass remaining is at least

1− 3ε/2. This completes the lemma.



Appendix B

Proofs for Chapter 2

B.1 Proof of Lemma 2.4

Recall that a distribution p is (σ, ε)-resilient iff ‖E[X − µ | E]‖ ≤ σ for all events E with probability

at least 1− ε. Note that this is equivalent to asking that ‖E[X−µ | E]‖ ≤ σ for all E with probability

exactly 1 − ε—if P[E] > 1 − ε, we can remove the points X ′ from E for which 〈v,X ′〉 is smallest

(where v is the dual unit vector to the point E[X − µ | E]) and thus increase E[X − µ | E]. Now note

that for events with probability 1− ε,

‖E[X − µ | E]‖ =
∥∥∥− 1− P[E]

P[E]
E[X − µ | ¬E]

∥∥∥ (B.1)

=
ε

1− ε
‖E[X − µ | ¬E]‖, (B.2)

and that ¬E is an event with probability ε. Therefore, ‖E[X − µ | E]‖ ≤ σ for all E with probability

1− ε if and only if ‖E[X − µ | ¬E]‖ ≤ 1−ε
ε σ for all ¬E with probability ε, as claimed.

B.2 Proof of Lemma 2.6

By Lemma 2.4, it suffices to show that (1− ε, 1−εε σ)-resilience is equivalent to (2.3). Suppose that E

is an event with probability ε, and let v be such that ‖v‖∗ = 1 and 〈E[X−µ | E], v〉 = ‖E[X−µ | E]‖.
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Then we have

‖E[X − µ | E]‖ = 〈E[X − µ | E], v〉 (B.3)

= 〈E[〈X − µ, v〉 | E] (B.4)

(i)

≤ E[〈X − µ, v〉 | 〈X − µ, v〉 ≥ τε(v)] (B.5)

(2.3)

≤ 1− ε
ε

σ. (B.6)

Here (i) is because 〈X − µ, v〉 is at least as large for the ε-quantile as for any other event E of

probability ε. This shows that (2.3) implies (1− ε, 1−εε σ)-resilience. For the other direction, given

any v let Ev denote the event that 〈X − µ, v〉 ≥ τε(v). Then Ev has probability ε and hence

E[〈X − µ, v〉 | 〈X − µ, v〉 ≥ τε(v)] = E[〈X − µ, v〉 | Ev] (B.7)

= 〈E[X − µ | Ev], v〉 (B.8)

(ii)

≤ ‖E[X − µ | Ev]‖ (B.9)

(iii)

≤ 1− ε
ε

σ, (B.10)

where (ii) is Hölder’s inequality and (iii) invokes resilience. Therefore, resilience implies (2.3), so the

two properties are equivalent, as claimed.

B.3 Proof of Proposition 2.10

We first note that (eλx − λx− 1) ≤ (eλ − λ− 1)x2 whenever |x| ≤ 1 and λ ≥ 0. We therefore have

E[exp(λ(X − µ))] ≤ E[1 + λ(X − µ) + (eλ − λ− 1)(X − µ)2] (B.11)

= 1 + (eλ − λ− 1) Var[X] (B.12)

≤ exp((eλ − λ− 1) Var[X]) ≤ exp((eλ − λ− 1)S), (B.13)

as was to be shown.

B.4 Proof of Lemma 2.11

Let E+ be the event that 〈xi − µ, v〉 is positive, and E− the event that it is non-negative. Then

P[E+]+P[E−] = 1, so at least one of E+ and E− has probablity at least 1
2 . Without loss of generality
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assume it is E+. Then we have

1

|S|
∑
i∈S
|〈xi − µ, v〉| =

2

|S|
∑
i∈S

max(〈xi − µ, v〉, 0) (B.14)

= 2P[E+]E[〈x− µ, v〉 | E+] (B.15)

≤ 2P[E+]‖E[x− µ | E+]‖ ≤ 2σ, (B.16)

where the last step invokes resilience applies to E+ together with P[E+] ≤ 1. Conversely, if S has

bounded 1st moments then

E[〈X − µ, v〉 | 〈X − µ, v〉 ≥ τ1/2(v)] ≤ E[|〈X − µ, v〉|]/P[〈X − µ, v〉 ≥ τ1/2(v)] (B.17)

= 2E[|〈X − µ, v〉|] ≤ 2σ, (B.18)

so S is (2σ, 12 )-resilient by Lemma 2.6.

B.5 Proof of Lemma 2.12

First, if S is (σ, ε)-resilient around µ0, then invoking resilience with T = S yields ‖µ− µ0‖ ≤ σ. It

then follows that

‖ 1

|T |
∑
i∈T

(xi − µ)‖
(i)

≤ ‖ 1

|T |
∑
i∈T

(xi − µ0)‖+ ‖µ− µ0‖ (B.19)

(ii)

≤ σ + σ = 2σ (B.20)

whenever |T | ≥ (1− ε)|S|. Here (i) is the triangle inequality and (ii) invokes resilience around µ0.

Conversely, if S is (σ, ε)-resilient around its actual mean µ, we have

‖ 1

|T |
∑
i∈T

(xi − µ0)‖
(i)

≤ ‖ 1

|T |
∑
i∈T

(xi − µ)‖+ ‖µ− µ0‖ (B.21)

(ii)

≤ σ + ‖µ− µ0‖, (B.22)

where (i) is again the triangle inequality and (ii) again invokes resilience (this time around µ). This

completes the proof.
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B.6 Proof of Lemma 2.14

First, we have

∑
i∈S

ciτi ≤
∑
i∈S

τi (B.23)

=
∑
i∈S

max(〈xi − µ, vj〉 − σ, 0) (B.24)

≤
∑
i∈S
〈xi − µ, vj〉I[〈xi − µ, vj > σ] (B.25)

(i)

≤ α

32 log(4/3α)
|S| · σ =

α2

32 log(4/3α)
n. (B.26)

Here (i) invokes (σ, α
32 log(4/3α) )-resilience of S, together with the fact that at most α

32 log(4/3α) |S|
elements of S can exceed σ. Next, let Q be the indices of the α

8 -fraction of largest values under p.

Then we have

n∑
i=1

ciτi =

n∑
i=1

ci max(〈xi − µ, vj〉 − σ, 0) (B.27)

≥
∑
i∈Q

ci(〈xi − µ, vj〉 − σ) (B.28)

(ii)

≥ (
∑
i∈Q

ci) · (2σ − σ) (B.29)

=
α

8
σ ·

n∑
i=1

ci. (B.30)

Here (ii) invokes the fact that the weighted average of 〈xi−µ, vj〉 across Q is σ+ by definition, which

is in turn at least 2σ.

B.7 Proof of Lemma 2.15

Let c′i denote the value after the update and ci denote the value before the update. Then we have

n∑
i=1

c′i =

n∑
i=1

ci −
1

τmax

n∑
i=1

ciτi (B.31)

(2.18)

≤
n∑
i=1

ci −
1

τmax

ασ

8

n∑
i=1

ci (B.32)

=
( n∑
i=1

ci
)
(1− 1

τmax

ασ

8
). (B.33)
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On the other hand, we have

∑
i∈S

ci − c′i =
1

τmax

∑
i∈S

ciτi (B.34)

(2.17)

≤ 1

τmax

α2

32 log(4/3α)
σ · n. (B.35)

Combining these and assuming that (R) holds for the ci, we have

n∑
i=1

c′i ≤
( n∑
i=1

ci
)(

1− 4 log(4/3α)

αn

∑
i∈S

(ci − c′i)
)

(B.36)

≤
( n∑
i=1

ci
)

exp
(
− 4 log(4/3α)

αn

∑
i∈S

(ci − c′i)
)

(B.37)

(R)

≤ n exp
(
− 4 log(4/3α)

αn

∑
i∈S

(1− ci)
)
· exp

(
− 4 log(4/3α)

αn

∑
i∈S

(ci − c′i)
)

(B.38)

= n exp
(
− 4 log(4/3α)

αn

∑
i∈S

(1− c′i)
)
, (B.39)

which shows that (R) is indeed preserved. Finally, suppose that
∑
i∈S(1 − ci) = α

4 n + δ and

hence
∑
i∈S ci = 3α

4 n − δ. Then (R) implies that
∑n
i=1 ci ≤

3α
4 n · exp(−4 log(4/3α)δ/αn) ≤

3α
4 n− 3 log(4/3α)δ <

∑
i∈S ci, which is a contradiction. This implies that

∑
i∈S(1− ci) ≤ α

4 n, as

claimed.



Appendix C

Proofs for Chapter 3

C.1 Proof of Lemma 3.5

We start by taking a continuous relaxation of (3.24), asking for weights ci ∈ [0, 1] rather than {0, 1}:

min
c∈[0,1]n,‖c‖1≥ 3n

4

max
‖v‖∗≤1

1

n

n∑
i=1

ci|〈xi, v〉|2. (C.1)

Note that we strengthened the inequality to ‖c‖1 ≥ 3n
4 , whereas in (3.24) it was ‖c‖1 ≥ n

2 . Given any

solution c1:n to (C.1), we can obtain a solution c′ to (3.24) by letting c′i = I[ci ≥ 1
2 ]. Then c′i ∈ {0, 1}

and ‖c′‖1 ≥ n
2 . Moreover, c′i ≤ 2ci, so 1

n

∑n
i=1 c

′
i|〈xi, v〉|2 ≤ 2

n

∑n
i=1 ci|〈xi, v〉|2 for all v. Therefore,

the value of (3.24) is at most twice the value of (C.1).

Now, by the minimax theorem, we can swap the min and max in (C.1) in exchange for replacing

the single vector v with a distribution over vectors vj , thus obtaining that (C.1) is equal to

lim
m→∞

max
α1+···+αm≤1
α≥0,‖vj‖∗≤1

min
c∈[0,1]n
‖c‖1≥ 3n

4

1

n

n∑
i=1

ci

m∑
j=1

αj |〈xi, vj〉|2. (C.2)

By letting v′j = αjvj , the above is equivalent to optimizing over vj satisfying
∑
j ‖vj‖2∗ ≤ 1:

lim
m→∞

max
‖v1‖2∗+···+‖vm‖2∗≤1

min
c∈[0,1]n
‖c‖1≥ 3n

4

1

n

n∑
i=1

ci

m∑
j=1

|〈xi, vj〉|2. (C.3)

For any v1, . . . , vm, we will find c such that the above sum is bounded. Indeed, define B(v1:m) to

be 1
n

∑n
i=1

√∑m
j=1 |〈xi, vj〉|2. Then take ci = I[

∑m
j=1 |〈xi, vj〉|2 < 16B2], which has ‖c‖1 ≥ 3n

4 by

Markov’s inequality, and for which
∑
i ci
∑
j |〈xi, vj〉|2 ≤ 4B(v1:m)2.

Therefore, the value of (C.1) is bounded by maxm,v1:m 4B(v1:m)2, and so the value of (3.24) is
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bounded by maxm,v1:m 8B(v1:m)2, which yields the desired result.



Appendix D

Proofs for Chapter 5

D.1 Proof of (5.39)

Note that

∑
i∈S

ci(fi(w)− fi(w̃)) =

∫ 1

0

∑
i∈S

ci〈∇fi(sw + (1− s)w̃), w − w̃〉ds (D.1)

(i)

≤ αnσ‖w − w̃‖2 +

∫ 1

0

∑
i∈S

ci〈∇f̄(sw + (1− s)w̃), w − w̃〉ds (D.2)

= αnσ‖w − w̃‖2 + f̄(w)− f̄(w̃) (D.3)

(ii)

≤ αnσ‖w − w̃‖2. (D.4)

Here (i) uses the bound (5.37) to conclude that ∇fi and ∇f̄ are close, while (ii) uses the optimality

of w for f̄ .
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D.2 Bounding ‖µ̂− µ‖2

We have

‖µ̂− µ‖2 = ‖
n∑
i=1

ci(ŵi − µ)/

n∑
i=1

ci‖2 (D.5)

≤
∑
i∈S ci∑n
i=1 ci

(∑
i∈S

ci‖ŵi − µ‖2/
∑
i∈S

ci
)

+

∑
i 6∈S ci∑n
i=1 ci

(∑
i∈S

ci‖ŵi − µ‖2/
∑
i 6∈S

ci
)

(D.6)

(i)

≤
∑
i∈S ci∑n
i=1 ci

· O(

√
σr/
√
α) +

∑
i 6∈S ci∑n
i=1 ci

· 2r (D.7)

(ii)

≤ O(

√
σr/
√
α) +

2(1− α)

1− α(1− α)/4
r. (D.8)

Here (i) uses the bound (5.51) together with ‖ŵi − µ‖2 ≤ 2r, and (ii) uses Lemma 5.6 to bound∑
i6∈S ci∑n
i=1 ci

. Suppose that α > 0.55 (i.e., ε = 1 − α < 0.45). Then simple calculation shows that
2(1−α)

1−α(1−α)/4 < 0.96. Therefore, we have ‖µ̂− µ‖2 ≤ O(
√
σr) + 0.96r, as claimed.
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