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Question: what concepts can be learned in the presence of arbitrarily corrupted data?



Related Work

e 060 years of work on robust statistics...

PCA:
e XCM '10, CLMW '11, CSPW 11

Mean estimation:
e LRV '16, DKKLMS 16, DKKLMS '17, L '17, DBS '17, SCV '17

Regression:
e NTN 11, NT '13, CCM 13, BJK 15

Classification:
e FHKP 09, GR '09, KLS '09, ABL '14

Semi-random graphs:
e FK '01, C'07, MMV '12, S '17

Other:
e HM '13, C '14, C '16, DKS '16, SCV '16
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Observe n points x1,...,x,

Unknown subset of an points drawn i.i.d. from p*

Remaining (1 — a)n points are arbitrary

Goal: estimate parameter of interest 6(p*)
e assuming p* € P (e.g. bounded moments)
e 0(p*) could be mean, best fit line, ranking, etc.

New regime: a < 1
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Why Care?

Practical problem: data poisoning attacks | |
e How can we build learning algorithms that are provably secure “= / ’ \\X

manipulation?
to manipulatio O

Fundamental problem in robust statistics
e What can be learned in presence of arbitrary outliers?

Agnostic learning of mixtures
e When is it possible to learn about one mixture component,

with no assumptions about the other components?
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Main Theorem

Observed functions: fi,..., f,

Want to minimize unknown target function: f

Key quantity: spectral norm bound on a subset I:

- max [V () = VF(@)herllop < S

- Meta-Theorem

Given a spectral norm bound on an unknown subset of an functions, learning is possible:

e in the semi-verified model (for convex f;)

e in the list-decodable model (for strongly convex f;)

All results direct corollaries of meta-theorem!
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Setting: distribution p* on R? with mean x and bounded 1st moments: "".ﬂ“
E,[|(x — p,v)|] < o|jv]|2 for all v € RY. WY
&,
Observe an samples from p* and (1 — «)n arbitrary points, and want to estimate p. . 34

- Theorem (Mean Estimation)

If an > d, it is possible to output estimates jiq, ..., it;, of the mean u such that
e m<2/a, and
o min™, [|it; — pll> = O(c//a) w.hop.

Alternately, it is possible to output an estimate /i given a single verified point from p*.
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DKKLMS '16 o(1 —a) «a>1—c¢ sub-Gaussian
CSV ’'17 o/ a a >0 Ist moments

Estimating mixtures:

Separation Robust?
AM '05 ok +1/y/a) no
KK 10 ok no
AS 12 o'k no

CSV 17 o/ a yes

Samples

d
d3
d
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Other Results

Stochastic Block Model: (sparse regime: cf. GV '14, LLV '15, RT '15, RV '16)

Average Degree Robust?

GV '14 1/a* no

AS '15 1/0? no

CSV ’'17 1/’ yes
Others:

e discrete product distributions
e exponential families

e ranking
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Summary

Method for robustness to large fraction of adversarial data

Can handle arbitrary convex loss functions
e based on spectral norm bound on gradients

Strong bounds in many concrete settings

e mixtures, stochastic block model

Open questions:
e Can larger amounts of verified data yield stronger bounds?
e Can we exploit strong convexity / gradient bounds in other norms?

e Can we obtain guarantees in the online setting?
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Main Theorem

- Meta-Theorem

Let f1,....f, : RY = R be a collection of k-strongly convex functions, and let f : R? — R
an unknown target function minimized at w*.

Suppose there is an (unknown) subset I C [n| of size an such that

b max [V, (w) = VI (w)iexlop < .

Then, there is an algorithm outputting m = % candidates wq, ..., w,, such that

min?, i — w*llz = O(S/(r/a)).

e Can remove strong convexity (semi-verified model)



