Learning from Untrusted Data

Moses Charikar

Motivation: data poisoning attacks:
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Question: What concepts can be learned in the presence of arbitrarily
corrupted data?’

-Main Theorem

Jacob Steinhardt

Gregory Valiant

-Proof Overview

- Meta-Theorem

Let f1,...,f, : R® = R be a collection of k-strongly convex functions,
and let f : R® — R an unknown target function minimized at w*.

Suppose there is an (unknown) subset I C |n| of size an such that

Then, there is an algorithm outputting m = % candidates wi, ..., W,

such that )
min?, [|i; — wl|z = O(S/ (ky/a))

e Can remove strong convexity assumption (semi-verified model)

Recall goal: given n points, an drawn from p*, estimate mean u of p*
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Key tension: balance adversarial and statistical error

, A : A
High-level strategy: solve convex optimization problem __-#_:--_.
e if cost is low, estimation succeeds (uniform convergence) AL DA
e if cost is high, identify and remove outliers Yol

-Problem Setting

Observe n points x1,...,x,

Unknown subset of an points drawn i.i.d. from p~*

Remaining (1 — «)n points are arbitrary

Goal: estimate parameter of interest 6(p*)
® assuming p* € P (e.g. bounded moments)

e O(p*) could be mean, best fit line, ranking, etc.

New regime: a < 1

-Corollary: Mean Estimation

-Why Care?

Practical problem: data poisoning attacks
e How can we build learning algorithms that are provably secure to ma-

nipulation?

Fundamental problem in robust statistics

e \What can be learned in presence of arbitrary outliers?

Agnostic learning of mixtures
e \When is it possible to learn about one mixture component, with no as-

sumptions about the other components?

-Algorithm

Setting: distribution p* on R¢ with mean 1 and bounded 1st moments:
(x — p,v)|] < o|lv]|s for all v € RY.

O |

Observe an samples from p* and (1 — a)n arbitrary points, and want to
estimate wu.

- Theorem (Mean Estimation)

If n > d/a, it is possible to output estimates ji1,. .., [i,, of the mean p
such that and min’., ||fi; — pll2 = O(o/v/a) w.h.p.
Interpretation:

e Harder to estimate for large o, small o

e Non-vanishing error as n — oo (necessary)

e Sample complexity (n): need at least d good samples

° need at least % candidates

Semi-verified model: need

First pass: minimize,, > ", |lz; — 1|3

Second pass: minimize,, ., > . ||xi — |3

Final pass: minimize,,, .. > iy |2 — pills +AF (i, - o s fin)
N\’

fi(pi)

Choices for F':

® nuclear norm: error o/«
e maximum nuclear norm over subsets: error o/y/a (intractable)

e minimum trace ellipsoid: error o/\/a (tractable)
Clean-up: remove outliers, cluster the p;, output the cluster means
e padded decompositions [FRT '03]

-Summary

-Why Is This Possible?

If e.g. o = % estimation seems impossible:

But can narrow down to 3 possibilities!

List-decodable learning [Balcan, Blum, Vempala '08]

e output O(1/«) answers, one of which is approximately correct

Semi-verified learning

® observe O(1) verified points from p*

Comparisons
Mean estimation:
Bound Regime Assumption Samples
LRV '16 ov1—a a>1—c¢  4th moments d
DKKLMS '16 o(1 —«a) a>1—c sub-Gaussian d”
CSV '17 o/ a >0 1st moments d

Stochastic Block Model:
[GV '14, LLV '15, RT '15, RV ’16]

Estimating mixtures:

Separation  Robust?
AM 05 o(k+1/y/a) no

Avg. Degree Robust?

KK '10 ok no GV '14 1/o no
AS '12 oVk no AS '15 1/’ no
CSV '17 o/ yes CSV '17 1/a” yes

(k = # of clusters, an = min cluster size) (an = minimum block size)

Other applications:
e discrete product distributions
e exponential families

® ranking

Method for robustness to large fraction of adversarial data
Can handle arbitrary convex loss functions
® based on spectral norm bound on gradients
Strong bounds in many concrete settings
® mixtures, stochastic block model
Open questions:
e Can larger amounts of verified data yield stronger bounds?
e Can we exploit strong convexity / gradient bounds in other norms?

e Can we obtain guarantees in the online setting?
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60 years of work on robust statistics...
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