Lyapunov functions

e Consider a damped pendulum:

mgl sin(6) — b0 + mi?6 = 0.

e No closed-form equation for trajectories, but we know they all converge
to 6 =6 = 0. Why? Because the energy is always decreasing!

e Lyapunov function: a function V of the state z such that V(z) <
0. Implies that if V(x(0) < p then V(x(t)) < p for all ¢ > 0 (global
asymptotic stability, assuming the sublevel sets of V' are bounded).

— If & = f(x), then V(z) = SV f(z).

Variants on the Lyapunov condition

Guarantee

Conditions

convergence to origin V(z) < 0if x 0,V (x) > V(0),V is continuous

exponential convergence |V(z) < —cV(z),V(z) > V(0),V is analytic

local Stablhty conditions only need to hold when V (z) < p

Verification of Stochastic Systems

Results

Motivation

As robots move from factory floors to more demanding
environments, they will have to cope with increasingly
complex uncertainty.

-Perceptual uncertainty from stereo vision or cluttered
environments.

-Dynamical uncertainty from rough terrain, wind gusts, or
grasping soft fabrics.

-Classical approach: robust control.

-If my uncertainty stays bounded in a certain region, then |
am guaranteed to reach my goal.

‘Problems: heavy-tailed noise, conservative due to worst-
case planning

-Goal: develop algorithms to deal with explicitly-modeled
uncertainty.

Background

«1965: Kushner provides Lyapunov-like techniques for
obtaining probabilistic guarantees about trajectories of
Markov chains; paper includes several handworked
examples, but he doesn’t have the computational machinery
to develop general algorithms.

«2001: Prajna et al. provide an algorithm for bounding
trajectories of switching systems with Gaussian noise. They
use sum-of-squares programming on Martingales, but cannot
handle noise at the origin and use a basis that leads to
conservative results.

-Our contribution: we combine Prajna’s algorithm with
Kushner’s theory to handle noise at the origin. We also work
In a basis that provides much tighter bounds at the expense
of more difficult computations.

Connection to Bellman Equations

e Suppose we have a Markov chain with a cost h(x,n) on being in state x at time n.

e The “cost-to-go” function is defined as

where N is a time horizon.

e The cost-to-go function is the unique solution to the Bellman equations:
J(x,n) =E[J(z(n+1),n+1) | z(n) = x].

e If the = is replaced with a >, then J is instead an upper bound on the cost-to-go. If
J(x,n) > E[J(z,n+ 1)] — ¢, then J(x,n) 4+ ¢(N —n) is an upper bound.

e If we set cost to probability of failure, then we get back to the martingale condition, and obtain a proof
of Theorem 1

Martingales

e Stochastic analogue of Lyapunov function

e Non-negative function V' such that E[V (x)] < ¢

' - EV(z(t+AY) |z(t)] -V (=(1))
e Define E[V (x(t))] as iltIEO A

o If dx(t) = f(x)dt + g(x)dw(t), where dw(t) is a standard Wiener process,
then 5

BV (e (0)] = G (@) + 5 T (a(0) 5 o))

Why E[V(z)] < ¢ instead of E|V (z)] <07

10 I r I) T T T T T

e Consider the equation dx(t) = —zdt 4+ dw(t) (above)
e Trajectory decays towards origin, then bounces around

e E[V(z)] <0 will be too strict in this case

e Relaxing to E[V (z)] < ¢ allows us to handle noise at the origin
(improvement over previous work)

Martingale Theorem

e A non-negative function V of the state x is a c-martingale if E[V (z)] < c.

e Theorem (Kushner 1965): Suppose that V' is a c-martingale in the region

where V (x) < p. Then the probability that z leaves the region {x | V(z) <
V(x(0))4cT
. :

p} before time T is at most

e Time-varying version also holds as long as V' is a continuous function of
time.

Use in controller synthesis

e A single martingale V' will yield bounds for an entire family of controllers
(see figure to right).

e We can use this bound as a proxy for controller quality and optimize our
choice of controller against the provided bound.

e Repeating this process is called DK iteration.

- Amount of Noise Rejected vs. Conbroller

Q
30
25 F

20

15 F

noise standard dev.

10

-3 -25 -2 -1.5 -1 -0.5 0
controller

Planar Quadrotor

Yerfied Rilure probability after 1 hour
'02 ~ 1

-0.1 -
40.8

-0.05 -
40.7

- 406

B (radians)

0.05 -

Martingales for Gaussian Systems

Calculating the Expected Derivative

e Consider a system with Gaussian noise: dz(t) = f(z)dt+g(x)dw(t), where
dw(t) is a vector of i.i.d. Wiener processes.

oY + L f(x) + 5 Tr (g(;(;)T%i‘Q/g(a:)).

e Then E[V(x,t)] =

e We will consider functions of the form V(z) = e® 57,

e In this case, we have

: T : 1 1
E[V(z,t)] = e* °* (:BTS:E + 227 Sf(x) + 5 Tr (gTSg) + §:BTSggTS:c>

Relaxing to a Polynomial Condition

We want to check if p(z)ed(®) < ¢ for polynomials p and q.
Re-arrange: p(z) < ce™(®),

Note that 1 — g(z) < e~ 2®) by convexity.

Sufficient condition: p(x) < ¢(1 — q(x)).

This is a polynomial condition, and Schur complements can be used to make it bilinear
in the decision variables. We then obtain the end result:

[t I gt Sx | -
zTSqg (1 —xT8z) —Tr(g? Sg) — 42T Sf(x) — 227 Sz + Ma, t)(xT Sz —p) | =

T
z(0)~ Sxz(0) +cT
er ’

then the probability of a trajectory leaving the region 7' Sz < p is at most ©

0.15
02 4
-0.5 0 0.5
x (meters)
T~
R T
o o R |

obstacle

— noiseless trajectory
O 99% confidence

Semidefinite and SOS Programming

Key idea: to find a good Lyapunov function/martingale, phrase the problem as a constrained polyno-
mial optimization problem.

We will use tools from semidefinite and sum-of-squares (SOS) programming to solve the optimization
problem.

Semidefinite programming: while not all optimization problems are tractable, a special subclass known
as semidefinite programs can be solved relatively efficiently. Example: maximizing x + 2y subject to

3+ 2z y]>0

the constraint that [1

Sum-of-squares programming: suppose that I want to check whether the polynomial 4x%y? + 2 +
162y + 2 + 4y? + 4y + 10 is nonnegative. This might be difficult, but if I told you that it was equal
to (x + 2y + 1)2 + (2zy + 3)2, then it would be clearly nonnegative. Sum-of-squares programming
generalizes this idea to transform polynomial optimization problems into semidefinite programs.

Optimization Techniques for Choosing a Martingale

e Since our bound on the failure probability has an e” term in the dominator, we will try to make p as

large as possible.

e Note that if we fix ¢ and A, the constraint is linear in S and p. Likewise, if we fix S and p, the constraint

is linear in ¢ and).

e Optimization strategy: First fix ¢ and A and optimize S and p, then fix S and p and optimize c

and \. But, there are a few issues to resolve.

Issues

e We need to find an initial feasible point.

e In the step when we fix p, we need a different objective function (maximizing p does
not make since if p is fixed).

e Modern numerical optimizers typically give solutions slightly outside the feasible
region. Iterative maximization can cause these errors to accumulate and lead to
numerical instability.

Solutions

e Initialize with an S matrix for the linearized system and a small value of p.

e First minimize ¢, then maximize ¢, and take the average of the two solutions (this

attempts to find a point close to the middle of the feasible region).

e After each maximization step, find a feasible point whose objective value is only slightly

less than the value obtained from the maximization. For instance, if the maximization
returns p = 2.3, then find a feasible point with the added constraint p > 2.29.

Comparison to Other Methods
Quality of Bound

-We compared our approach to a “worst-case” method and to the
true answer for the rimless wheel system (see below right).

This system has non-Gaussian noise, so we tried both linearizing
the noise and adding a state variable to filter the noise through a
nonlinear transformation.

1= 3621

‘Results: 1
Method Verified # of Ground Impacts DE
worst-case (non-linear noise) 313 05
worst-case (linear noise) 428 1.;-
our method (non-linear noise) 50 -,'_! T
our method (linear noise) 12647 0 =
exact computation 643600)

Scalability

-We compared the scalability of our approach to state
discretization for verifying stability of a multi-room heating system
(dimension of state space grows with number of rooms).

State discretization only scales to 7 rooms (taking about 6 hours).
Our approach solves the 7-room case in under 15 minutes.

-Our approach can handle at least the 10-room case, and scales
polynomially with dimension.

