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Abstract
Given a model θ and unlabeled samples from a
distribution p∗, we show how to estimate the la-
beled risk of θ while only making structural (i.e.,
conditional independence) assumptions about p∗.
This lets us estimate a model’s test error on distri-
butions very different than its training distribution,
thus performing unsupervised domain adaptation
even without assuming the true predictor remains
constant (covariate shift). Furthermore, we can
perform discriminative semi-supervised learning,
even under model mis-specification. Our techni-
cal tool is the method of moments, which allows
us to exploit conditional independencies without
relying on a specific parametric model. Finally,
we introduce a new theoretical framework for
grappling with the non-identifiability of the class
identities fundamental to unsupervised learning.

1. Introduction
We study the problem of unsupervised risk estimation —
that is, given a loss function L(θ;x, y), and a test distribu-
tion p∗(x, y), estimate the risk R(θ)

def
= Ex,y∼p∗ [L(θ;x, y)]

given access only to m unlabeled examples x(1:m) i.i.d.∼
p∗(x). Can we do this without making strong parametric
assumptions about p∗? Although perhaps daunting at first
glance, previous work has successfully made progress by
only requiring parametric assumptions on the losses; for in-
stance, Balasubramanian et al. (2011) assume Gaussianity
of model scores, while a line of work starting with Dawid
& Skene (1979) assume multiple classifiers with known de-
pendency structure, which specifies a complete generative
distribution for the 0/1-loss (Zhang et al., 2014; Platanios,
2015; Jaffe et al., 2015).

In this work, we show that modeling the losses is unneces-
sary, and that we can in fact recover the risk for multiclass
classification while only making conditional independence
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Figure 1: In this paper, we make the “3-view” assumption
illustrated above, but do not make any additional generative
or discriminative assumptions about the true distribution p∗.
In particular, we do not estimate p∗(x | y) or p∗(y | x),
and instead solve for the risk directly using the method of
moments. We assume that the loss decomposes across the
views, which is the case for many models under both the log
and squared loss (but not the hinge loss).

assumptions about p∗ — in particular, that the input x is
split into three views which are independent conditioned on
the true label, and that the loss decomposes over these views
(see Figure 1). As an example, these conditions hold for
many groups of diseases/symptoms in the QMR knowledge
base (Halpern & Sontag, 2013); more generally, the 3-view
assumption is the workhorse of the method of moments for
estimating latent-variable models (e.g., Anandkumar et al.,
2013). Indeed, the method of moments is one of the main
technical tools in this paper.

We view unsupervised risk estimation as a prerequisite of
any attempt to harness unlabeled data. Two use cases of
interest are:

1. Domain adaptation: given an initial model trained on
a source domain, adapt it to a target domain given only
unlabeled target data. If θ0 is the initial model, we can
perform the adaptation as min‖θ−θ0‖≤r R(θ).

2. Semi-supervised learning: given a small number of
labeled examples and many unlabeled examples, fit an
accurate model. If we let Rlabeled denote the risk
on the labeled examples, we can do this by solving
minθ Rlabeled(θ) +R(θ).

Traditional approaches to domain adaptation typically as-
sume covariate shift and overlap between the source and
target distributions (Shimodaira, 2000; Quiñonero-Candela
et al., 2009). Blitzer et al. (2011) show that under a two-
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view assumption, source-target overlap is unnecessary. Our
results show that with three independent views, even the co-
variate shift assumption can be done away with.

One approach to semi-supervised learning is to build a gen-
erative model over x and y, and include the marginal like-
lihood on the unlabeled examples as part of the cost func-
tion during learning. However, a wide body of empirical
evidence shows that, when the generative model is mis-
specified, the unlabeled examples can actually degrade per-
formance (Merialdo, 1994; Cozman & Cohen, 2006; Liang
& Klein, 2008; Li & Zhou, 2015). Because of this, two-
view assumptions have been used as an alternative to the
generative approaches (Blum & Mitchell, 1998; Ando &
Zhang, 2007; Kakade & Foster, 2007; Balcan & Blum,
2010). These methods all assume some form of low noise or
low regret, as do other methods such as transductive SVMs
(Joachims, 1999). Our results imply that, with three inde-
pendent views, such assumptions are unnecessary.

By focusing on the central problem of risk estimation, our
work connects multi-view learning approaches for domain
adaptation and semi-supervised learning, and extends them
to remove covariate shift and low-noise assumptions. Our
work does not strictly generalize the work above, as for in-
stance Kakade & Foster (2007) and Blitzer et al. (2011) as-
sume low regret but not independence, and consider regres-
sion rather than classification.

Finally, we treat a fundamental identifiability issue — that
the class identities are only recoverable up to permutation
in any unsupervised setting. Previous work required strong
assumptions to circumvent this issue (e.g. that the class
probabilities are distinct and known (Balasubramanian et al.,
2011) or that the classifiers are correct on average (Jaffe
et al., 2015)). We instead show that, as long as the model
slightly outperforms random guessing, the class identities
are correct with high probability. We do this by formulat-
ing a robust Bayesian hypothesis test whose performance
is justified via a novel notion of identifiability index, us-
ing classical tools such as metric entropy (Kolmogorov &
Tikhomirov, 1959; Lorentz, 1966), fractional covering num-
bers (Lovász, 1975), and Lipschitz concentration of Gaus-
sians (Tsirelson et al., 1976).

While previous work has used multi-view assumptions to
estimate the 0/1-risk, our setting is quite different, as the as-
sumptions in e.g. Zhang et al. (2014) or Jaffe et al. (2015)
yield a fully-specified family for the distribution of 0/1-
losses, and they proceed by estimating this distribution. In
contrast, we directly estimate the risk without needing to es-
timate the underlying distribution of losses.

Our main technical results are:

• Risk Estimation: we estimate the risk R(θ) to error ε
given a number of unlabeled samples that depends on ε

and the number of classes k, but not on the dimension d
of θ (Theorem 2.2).
• Learning: given poly(k) · d log(d)

ε2 unlabeled samples,
we learn the optimal parameters θ up to error ε (Corol-
lary 3.2).
• Identifiability: We develop a robust Bayesian hypothesis

test (Algorithm 2), and show that if the estimated risk is at
least slightly better than random guessing, then we have
very likely identified the true classes.

2. Framework and Estimation Algorithm
We will focus on multiclass classification; we assume an un-
known true distribution p∗(x, y) over X × Y , where Y =
{1, . . . , k}, and are given unlabeled samples x(1), . . . , x(m)

drawn independently from p∗(x). Given parameters θ ∈ Rd
and a loss function L(θ;x, y), our goal is to estimate the risk
of θ on p∗:

R(θ)
def
= Ex,y∼p∗ [L(θ;x, y)]. (1)

Throughout, we will make the 3-view assumption:
Assumption 2.1 (3-view). Under p∗, x can be split into
x1, x2, x3, which are conditionally independent given y (see
Figure 1). Moreover, the loss decomposes additively across
views: L(θ;x, y) = A(θ;x) −

∑3
v=1 fv(θ;xv, y), for some

functions A and fv .

Often L will be the log loss for a model pθ(y | x) ∝
exp(θ>

∑3
v=1 φv(xv, y)), in which case fv(θ;xv, y) =

θ>φv(xv, y) and A(θ;x) is the log partition function.

Note that Assumption 2.1 is not enough to recover R, be-
cause permuting the classes {1, . . . , k} will preserve p∗(x)
(as well as the conditional independence) but will change
the risk R. However, it turns out that this is the only thing
that is unknown; in particular, define the optimistic risk R̃
as the minimum risk over all permutations of the classes:

R̃(θ)
def
= min

σ∈Sym(k)
Ex,y∼p∗ [L(θ;x, σ(y))], (2)

where Sym(k) is the group of permutations on {1, . . . , k}.
We will show that R̃ can be recovered, as Theorem 2.2 indi-
cates below. The key insight is that, even without estimating
p∗(y | x), we can express R̃(θ) in terms of certain moments
of p∗, which are obtained as the solution to a system of cu-
bic equations (corresponding to 3rd-order moments) derived
from Assumption 2.1.

We start by expanding the definition of R:

R(θ) = Ā(θ)−Rlinear(θ), where

Ā(θ)
def
= Ex∼p∗ [A(θ;x)],

Rlinear(θ)
def
=

k∑
j=1

p∗(y = j)

3∑
v=1

E[fv(θ;xv, j) | y = j].
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The first term Ā can be estimated from only unlabeled data,
while the second term Rlinear can be expressed in terms of
the conditional expectations µj,v = E[fv | y = j], more
formally defined as (suppressing the dependence on θ):

µj,v
def
= E[hv(x) | y = j], where

hv(x)
def
= [fv(θ;xv, 1) · · · fv(θ;xv, k)]

>
. (3)

Thus hv(x) is the vector of model scores, while µj,v is the
mean score vector across class j. If we let πj = p∗(y = j)

for convenience, then Rlinear(θ) =
∑k
j=1 πj

∑3
v=1(µj,v)j .

This is useful as it implies that, to estimate R, we need only
estimate π and µ.

From here, we follow the technical machinery behind the
spectral method of moments (e.g., Anandkumar et al., 2012),
which we explain for completeness. The conditional inde-
pendence of the xv means that conditioned on y = j, the
second- and third-order moments of h are products of the
first-order moments µj,v . By marginalizing over y, we ob-
tain the following equations, where⊗ is the Kronecker prod-
uct (also called outer product or tensor product):

E[hv(x)] =

k∑
j=1

πjµj,v

E[hv(x)⊗hv′(x)] =

k∑
j=1

πjµj,v ⊗ µj,v′ for v 6= v′

E[h1(x)⊗h2(x)⊗h3(x)] =

k∑
j=1

πjµj,1 ⊗ µj,2 ⊗ µj,3 (4)

Note that the left-hand-side of each equation can be esti-
mated from unlabeled data. There are more independent
equations than unknowns in (4) for any k ≥ 2; in particular,
Anandkumar et al. (2012) show (see Theorem 7 therein) that
we can recover π and µ up to permutation: that is, there is
some permutation σ ∈ Sym(k) such that p∗(y = j) ≈ π̂σ(j)

and E[hv(x) | y = j] ≈ µ̂σ(j),v .

Implications. Once we have π and µ, we can plug back into
R. If we had σ, we could plug in exactly:

R(θ) = Ā(θ)−
k∑
j=1

p∗(y = j)

3∑
v=1

E[fv(θ;xv, j) | y = j]

≈ Ā(θ)−
k∑
j=1

π̂σ(j)

3∑
v=1

(µ̂σ(j),v)j

Since we don’t know σ, we can instead take the minimum
over all σ, which yields R̃. This minimization is an instance
of maximum weight bipartite matching, and can be solved
in O

(
k3
)

time; see Section A for details.

Putting all of the above ideas together, we obtain Theo-
rem 2.2, which gives a sample complexity bound for es-
timating R̃ that depends on the number of classes k, the

minimum class probability πmin, the second moment of the
loss τ , and the minimum singular value σk(Mv), where
Mv

def
= [µ1,v · · · µk,v]. More formally:

Theorem 2.2. Suppose Assumption 2.1 holds. Then, we can
estimate R̃(θ) to accuracy ε with probability 1 − δ for any
0 < ε, δ < 1 using

m = poly
(
k, π−1

min, λ
−1, τ

)
· log(2/δ)

ε2
samples, where

πmin
def
=

k
min
j=1

πj ,

τ
def
= max

(
max
j,v

√
E[‖hv‖22| y = j],

√
E[A2]

)
, and

λ
def
=

3
min
v=1

σk(Mv). (5)

For a full proof, see Section B. In summary, Assumption 2.1
yields a set of moment equations (4) that, when solved, al-
low us to estimate the optimistic risk R̃(θ).

3. From Estimation to Learning
In the previous section, we saw how to estimate the risk
R(θ) up to permutation of the labels. We now turn to the
problem of learning, i.e., minimizing over θ ∈ Rd. We will
first show how to compute the gradient ∇θR̃, and next at-
tend to the difference between minimizing R̃(θ) and mini-
mizing R(θ). For the latter, we assume that we have at least
an initial point θ0 in a certain “good” region Θ0, often ob-
tainable by training on a related task or from a small amount
of supervised data. To elaborate on this, we provide some
geometric intuition about R and R̃.

Let Rσ(θ) be the risk when the labels are permuted by
σ: Rσ(θ)

def
= Ex,y∼p∗ [L(θ;x, σ(y))]. Then R = Rid,

where id is the identity permutation, while R̃ is the
minimum of the functions Rσ . This is illustrated below:

θ

L

“good” region Θ0

gap

Rσ1

R

Rσ2

R̃

We define Θ0 to be the region where R(θ) = R̃(θ), or
equivalently where minσ 6=idR

σ(θ) − Rid(θ) ≥ 0. Define
gap(θ) to be the difference between the smallest and
second-smallest values (over σ) of Rσ(θ); then gap(θ) = 0
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at the boundary of Θ0. The gap measures how easy it is to
mix up two of the curves Rσ in the presence of noise.

Computing the gradient. To compute ∇θR, the
straightforward approach is (recalling R(θ) = Ā(θ) −∑3
v=1 E[fv(θ;x, y)]) to take the vectors ∇θfv and compute

their expectations similarly to Theorem 2.2. However, equa-
tion (4) would then involve a kd × kd × kd tensor, which
is prohibitive even for e.g. k = 2, d = 104. Instead, we
take an approach inspired by Nesterov & Spokoiny (2011),
which is to compute the directional derivative u>∇θfv (re-
quiring only a k × k × k tensor) and from several such u
approximate the full gradient.

In particular, we take u ∈ Rd and replace fv in equa-
tion (4) with u>∇θfv , thus estimating u>∇θRlinear =∑3
v=1 Ex,y[u>∇θfv] from only poly(k) samples. By sam-

pling many such u, we can estimate the full gradient as∑3
v=1 Eu,x,y[uu>∇θfv(x, y)], assuming E[uu>] = Id×d.

This still does not quite work, because we only obtain each
u>∇θfv up to a permutation σu, which will be different for
different u. We remedy this by simultaneously estimating fv
and u>∇θfv; since fv is the same each time, we can use it to
undo the permutations σu, allowing us to correctly average
across u. The full procedure is given as Algorithm 1, and
requires log(d/ε) times as many samples as in Theorem 2.2.
In particular (see Section C for proof):

Theorem 3.1. Suppose that Algorithm 1 is run with m =

poly
(
k, π−1

min, λ
−1, τ

)
· log(d/εδ)

ε2 samples as input at a point
θ0, and that ε < min(1, gap(θ0)). Then with probability
1− δ, the output of Algorithm 1 is a vector ĝ satisfying

∥∥∥ĝ −∇R̃linear(θ0)
∥∥∥

2
≤ εB, (6)

where B2 = max3
v=1 E[maxkj=1‖∇θfv(θ0;x, j)‖22] mea-

sures the squared `2-norm of the gradient.

Note that Algorithm 1 can likely be improved substantially
by replacing the random projections with fast low-rank pro-
jections (Halko et al., 2011), which would allow efficient
direct computation of the full gradient.

Linear models. When the fv are linear in θ — e.g. for mul-
ticlass logistic regression — evaluating the gradient once is
sufficient for all iterations of learning. The reason is that
R(θ) is then equal to Ā(θ)− θ>∇θR̃linear(θ0), for any vec-
tor θ0 ∈ Θ0. As long as we regularize θ by constraining
‖θ‖2≤ ρ, approximating ∇R̃linear with ĝ will still yield a
near-optimal θ. In particular (again see Section C):

Corollary 3.2. Suppose that fv(θ;xv, y) = θ>φv(xv, y),
where ‖φv(xv, j)‖2≤ B for all v, xv , j and that A(θ;x) is
B-Lipschitz in θ. Also suppose that we run Algorithm 1 at
a point θ0 ∈ Θ0 to obtain ĝ. Then, if ε and m satisfy the

Algorithm 1 Algorithm for computing the gradient of R̃.
Input: initial parameters θ0 ∈ Rd, samples x(1:m) ∼ p∗.
Define hv(x, u) ∈ R2k as

hv(x, u) = [fv(θ0;xv, j) u>∇θfv(θ0;xv, j)/B]kj=1

for t = 1 to T = 75d log(2d/δ)
ε2 do

Sample ut uniformly from {±1}d.
Using x(1:m), estimate the moments

E[hv(x, ut)],E[hv1(x, ut)⊗ hv2(x, ut)], and
E[h1(x, ut)⊗ h2(x, ut)⊗ h3(x, ut)].

Use tensor decomposition to compute π̂j,t ≈ πj , µ̂j,t ≈∑
v µj,v , and ĝj,t ≈

∑
v E[u>t ∇θfv(θ0;xv, j) | j].

Permute the rows of µ̂j,t (and simultaneously ĝj,t) such
that

∑
j π̂j,t(µ̂j,t)j is maximized.

end for
Output ĝ = 1

T

∑T
t=1 ut

∑k
j=1 π̂j,tĝj,t.

conditions in Theorem 3.1, and we let

θ̂ = arg min
‖θ‖2≤ρ

1

m

m∑
i=1

A(θ;x(i))− θ>ĝ, (7)

then R(θ̂) ≤ min‖θ‖2≤ρR(θ) + 2εBρ with probability 1 −
2δ.

If e.g. ‖θ‖2= ‖φ‖∞= 1, then we will have ρ = 1 and
B ≤

√
d, whence we need ε� 1/

√
d to obtain good bounds

on R(θ̂); Corollary 3.2 then implies a sample complexity of
poly

(
k, π−1

min, λ
−1, τ

)
· d log(d/εδ).

A general criterion. If the fv are non-linear, we likely need
to evaluate R̃ at more than one point, and there is no guar-
antee that R̃(θ) = R(θ) once we move away from θ0. To
help address this, we provide a criterion which certifies that,
given an initial point θ0 ∈ Θ0, a new point θ will also lie in
Θ0:

Lemma 3.3. Suppose θ0 ∈ Θ0, and θ satisfies

Ex∼p∗
[

k
max
j=1
|f(θ;x, j)− f(θ0;x, j)|

]
<

1

2
(gap(θ0) + gap(θ)) ,

(8)
where f =

∑3
v=1 fv . Then, θ ∈ Θ0 as well.

See Section D for a proof. The idea is that the left hand
side of (8) bounds the amount that any of the Rσ (or more
precisely, Rσ − Ā) can move. Note that the left-hand-side
of (8) can be estimated from unlabeled data.

We can use Lemma 3.3 to modify any optimization proce-
dure: given any proposed next point θt+1, backtrack in the
direction of the current point θt until (8) holds, and then
continue the optimization. Note however that if (8) is overly
conservative then we may not reach the optimum.
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Figure 2: Illustration of Definition 4.1. Each ball is a set
Br(q) = {p | D (p ‖ q) ≤ r}. If no single ball has large
probability mass under ν, then no small number of distribu-
tions q1, . . . , qM can fit a random distribution from ν well.

4. Identifiability Index
In Section 2, we showed how to identify the riskR up to per-
mutation of the classes (thus instead obtaining the optimistic
risk R̃). We now study more carefully how this optimism
can affect our estimate of the risk. This will help us avoid
false negatives where R̃ is small but R is large; at a high
level, we will see that if R̃ is better than random guessing,
then R̃ = R with high probability.

Intuitively, a generic “bad” distribution is simply not very
related to the model, and so none of its permutation will be,
either. To formalize what is meant by generic, we adopt a
robust Bayesian perspective: we define a prior ν over pos-
sible input distributions p∗, and design a test with low false
negative rate under the prior, where the test is (nearly) inde-
pendent of the choice of ν. In the following, we restrict to
the log loss, as the proofs are already hard for this case.

Identifiability index. If we think of the k! permutations of
the classes as simply k! candidate models, then the ques-
tion becomes: how high can we make the probability that
at least one of the models looks good by chance? We adopt
a Bayesian approach and suppose that the true distribution
p∗(y | x) is drawn from a prior ν. For a given q(y | x), we
can consider the ball of possible p∗ that are fit well by q; if
all such balls have low mass under ν, then it is impossible to
fit p∗ well by chance (this is illustrated in Figure 2).

Formally, we take the ball Br(q)
def
= {p | D (p ‖ q) ≤ r};

here the divergence D (p ‖ q) is the average KL divergence

D (p ‖ q) def
= Ex∼π[KL (p(· | x) ‖ q(· | x))], (9)

where π(x) is the distribution over x. We then define the
identifiability index of ν to be the most mass that can be
covered by a single such ball:

Definition 4.1 (Identifiability index). For a given r,
the identifiability index αr for a prior ν is defined as
supq ν(Br(q)).

In particular, if αr � 1
k! , then it is unlikely that any of

the k! permutations of a model pθ would have low risk by
chance. We will see below (Theorem 4.4) that αr is often
exp(−Ω(d)) for d-dimensional exponential families.

Algorithm 2 Algorithm for checking that R̃(θ) = R(θ).

Input: model pθ, failure probability δ, samples x(1:m).
Let r0 satisfy αr0 ≤ δ

k! .
Return true if R̃(θ) ≤ r0, else false.

In addition to the identifiability index, we also care about
how well-separated the classes are — if they are not very
well-separated, then it is more likely that two classes have
been mixed up. We can formalize this by looking at the
minimum gap in risk from getting a single class wrong:

Definition 4.2 (Class separation). The class separation γ(θ)

of pθ is defined as γ(θ)
def
= minj′ 6=j(µj)j − (µj)j′ , where

µj =
∑3
v=1 µj,v is the mean score across class j.

Note that we cannot estimate the class separation (since it
depends on the true permutation of the µj), so we assume
that either γ(θ) > 0, or p∗ is drawn at random from ν. We
can then check that R(θ) = R̃(θ) (with failure probability
δ) by checking that R̃(θ) ≤ r0, where αr0 ≤ δ/k!. This
test is depicted in Algorithm 2. The validity of this test is
certified by Proposition 4.3 (proved in Section E):

Proposition 4.3. Suppose that ν has identifiability index αr,
and that ν′ induces positive class separation (γ(θ) > 0) with
probability 1. Then, if p∗ ∼ ν̂, with ν̂ ∈ {ν, ν′}, we have the
false negative bound

max
ν̂∈{ν,ν′}

Pν̂ [R̃(θ) ≤ r ∧ R̃(θ) 6= R(θ)] ≤ k!αr. (10)

Thus, assuming that p∗ either has positive separation or is
drawn at random from ν, Algorithm 2 has a false negative
rate of at most δ. The test depends on the prior ν only
through the identifiability index, which we show below is
small for many priors, even when r = log(k)− ε (note that
log(k) is the risk of uniform guessing).

Identifiability and learning. The intuition in Figure 2 also
applies in the learning setting, if instead of the k! permuta-
tions of a fixed model we consider all models in some fam-
ily Θ. We can bound the false negative rate under p∗ ∼ ν
in terms of the identifiability index as well as the cover-
ing number of Θ (i.e., the minimum number of balls Br(q)
needed to cover Θ); details are in Section F.

Computing αr. We referred to Algorithm 2 as a ro-
bust Bayesian hypothesis test because the test depends on
the prior ν only through the identifiability index αr. We
strengthen the robustness argument by showing that αr is
small — typically exponentially small in the dimension.

To start, for exponential families, the identifiability index αr
is large under a Gaussian prior:

Theorem 4.4. Consider an exponential family defined by φ,
i.e. pβ(y | x) ∝ exp(β>y φ(x)). Assume that φ(x) 6= 0
almost surely, and let γ be the maximum singular value of
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Ex∼π[φ(x)φ(x)>/‖φ(x)‖22]. Then, there exists a multivari-
ate normal distribution ν over β with identifiability index
αlog(k)−ε = exp((ε/3k)

4
γ−1).

Note that γ−1 ≈ d assuming the features are well-
conditioned. For large d Theorem 4.4 implies that αr �
1/k! when r is even slightly less than log(k). The proof of
Theorem 4.4 is based on Lipschitz concentration bounds for
Gaussian distributions and is given in Section 5.

More generally, we can consider any family of distributions
P , and ask whether there is a prior over P with small identi-
fiability index. As might be expected from Figure 2, the ex-
istence of such a prior depends only on the covering number
NP(·). Some care is needed because the divergence D (· ‖ ·)
is not a metric, but we can nevertheless show:
Theorem 4.5. Given a spaceP , letα∗r be the minimum iden-
tifiability index of any prior ν on P . Also assume that α∗r is
continuous in r and that NP(r) < ∞ for all r > 0. Then
for all 0 < ε < 1,

NP (r − ε)
1 + logNP(k−

1
2 (ε/26)

3
)
≤ (α∗r)

−1 ≤ NP (r) . (11)

Therefore, for any sufficiently large space P we can obtain
a prior with small identifiability index. Theorem 4.5 formal-
izes a simple intuition: if it takes a large number of distri-
butions to cover P , then a small number of distributions can
only cover a small fraction of P . Our proof, given in Sec-
tion 5, exploits a duality between the identifiability index
and fractional covering number, as well as certain approxi-
mate triangle inequalities for the KL divergence.

5. Identifiability Index: Proofs
We now provide proofs of Theorems 4.4 and 4.5. This sec-
tion may be skipped if desired, but we include it for the
inclined reader because the ideas are novel. To preserve
the flow, we sometimes gloss over parts of the argument,
in which case we will include a reference to the part of the
supplement where the argument is fleshed out.

Proof of Theorem 4.4

Recall that we have pβ(Y = j | x) ∝ exp(β>j φ(x)), and
want a prior ν over β such that Pβ [D (pβ ‖ q) ≤ log k − ε]
is small for all q. We will take each βj ∼ N (0, Id×d), and
then scale by a large enough constant τ that pβ(y | x) can
be treated (see G.1) as a point mass:

pβ(y | x) = δyβ(x), yβ(x)
def
= arg max

j
β>j φ(x). (12)

At a high level, we prove a concentration inequality: for any
fixed q, Ex∼π[q(yβ(x) | x)] ≈ 1

k with high probability (over
β). We do this by constructing a Lipschitz (in β) approxi-
mation to q and then applying known results on Lipschitz
functions of Gaussians (Tsirelson et al., 1976).

To start, note that D (pβ ‖ q) = Ex∼π[− log q(yβ(x) | x)].
Since − log(q) ≥ log(k) + 1− kq, we can show that

D (pβ ‖ q) ≤ log(k)−ε =⇒ Ex∼π[q(yβ(x) | x)] ≥ 1 + ε

k
.

(13)
To avoid technical issues, we approximate the distribution
over x by m samples and take m→∞, yielding (see G.2):

lim
m→∞

Pβ,x1:m

[
1

m

m∑
i=1

q(yβ(xi) | xi) ≥
1 + ε

k

]
. (14)

To bound the sample average in (14), we will exploit the
Lipschitz concentration of multivariate Gaussians:
Theorem 5.1 (Boucheron et al. (2013), Theorem 5.6). If f
is L-Lipschitz in `2-norm and β ∼ N (0, I), then

P[f(β)− E[f(β)] ≥ t] ≤ exp(−t2/2L2). (15)

We interpret β 7→ 1
m (q(yβ(x1) | x1) + · · ·+ q(yβ(xm) | xm))

as a composition of simpler functions, each of which
is Lipschitz. Let tij = φ(xi)

>βj/‖φ(xi)‖2 (so that
yβ(xi) = arg maxj t

i
j), and note that [t1j · · · tkj ] = β>j Φ,

where Φ = [φ(xi)/‖φ(xi)‖2]mi=1. We have (see G.3) the
following diagram, with Lipschitz constants in blue:

β1, . . . , βk

t11, . . . , t
1
k · · · tm1 , . . . , t

m
k

q(yβ(x1) | x1) · · · q(yβ(xm) | xm)

1
m

∑m
i=1 q(yβ(xi) | xi)

‖Φ‖op

???

1√
m

The first step β1:k 7→ t1:m
1:k has Lipschitz constant ‖Φ‖op

(where ‖·‖op indicates operator norm), and the last has Lip-
schitz constant 1/

√
m. However, the argmax in the middle

stage is not even continuous, so has Lipschitz constant∞!

We fix this by giving q credit for being close: i.e. if
y′ 6= y is distance s < δ from being the argmax, add in(
1− s

δ

)
q(y′). This increases the expectation of q by at

most δ (see G.4) while making the function t 7→ q be
√

2
δ -

Lipschitz. Taking δ = ε
2k , we obtain a 2

√
2k‖Φ‖op
ε
√
m

-Lipschitz
composition, and want it to exceed its expectation (of at
most 1+ε/2

k ) by less than ε
2k . Applying Theorem 5.1, the

probability that this does not happen is at most (see G.5)
exp

(
− ε4

64k4
m
‖Φ‖2op

)
. Since 1

mΦΦ> converges almost surely

to E[φ(x)φ(x)>/‖φ(x)‖22], (14) is bounded by (see G.6)
exp(−(ε4/64k4)γ−1) < exp(−(ε/3k)4γ−1), from which
Theorem 4.4 follows.
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Proof of Theorem 4.5

To upper bound (α∗r)
−1, take a minimal covering

{qm}NP(r)
m=1 ; note that ν (∪mBr(qm)) = 1 for any ν, hence

at least some Br(qm) must have mass at least 1
NP(r) .

For the lower bound, we want to show that if P needs many
balls Br(q) to be covered, then a single ball can cover only
a small fraction of P . Let U be the space of all distributions
q, and let f : U → {0, 1} select a single q ∈ U . We can then
write down a min-max integer linear program between ν and
f in order to find the distribution ν over P that is hardest to
cover. In the equations below, we interpret f as a member of
the functions from U to {0, 1} with finite support, and write
‖f‖1=

∑
q:f(q)6=0|f(q)|. Then ‖f‖1= 1, and applying the

minimax theorem (see H.2), we have

α∗r = min
ν

sup
f :U→{0,1}
‖f‖1=1

Ep∼ν

[ 1 ifBr(q) covers p︷ ︸︸ ︷∑
q:Br(q)3p

f(q)

]

= sup
f :U→[0,1]
‖f‖1=1

min
p∈P

∑
q:Br(q)3p

f(q) =
1

Nfrac
, (16)

where Nfrac = inf ‖f‖1 s.t.
∑
q:Br(q)3p f(q) ≥ 1 ∀p ∈ P .

The quantity Nfrac is the fractional covering number and is
well-studied. For instance (Lovász, 1975):
Lemma 5.2. For a collection of subsets C of a space P , let
N(P, C) denote the covering number and Nfrac(P, C) the
fractional covering number. Then Nfrac(P, C) ≥ N(P,C)

1+log|P| .

The proof is a simple randomization argument; see H.1. In
our case, C = {Br(q) | q ∈ U}. Lemma 5.2 does not
directly apply because |P| is infinite, but the following ap-
proximate triangle inequality (proved in H.3) lets us dis-
cretize, showing that we can replace P with a sufficiently
fine covering P̂ of P while only changing KL divergences
by a small amount:
Lemma 5.3. Suppose that p, p̂ satisfy D (p ‖ p̂) ≤ ε for
some ε < 1/4. Then for any q, the mixture distribution
q = (1−

√
ε)q +

√
εu (where u(y | x) is uniform) satisfies:

1. D (p ‖ q) ≤ D (p̂ ‖ q) + 5
√
ε log(k/ε)

2. D (p̂ ‖ q) ≤ D (p ‖ q) + 5
√
ε log(k/ε)

If P̂ is a ε-covering of P , we can thus transform any r-
covering covering of P̂ into a (r + 5

√
ε log(k/ε))-covering

of P and vice versa. Applying Lemma 5.2 to P̂ then yields
Theorem 4.5. (See H.4 for a more detailed justification.)

6. Experiments
To better understand the behavior of our algorithms, we per-
form experiments on a version of the MNIST data set that is
modified to ensure that the 3-view assumption holds. Specif-
ically, to create an image, we sample a class in {0, . . . , 9},

Figure 3: Sample train images (left) and test images (right)
from the modified MNIST data set.

then sample 3 images at random from that class, letting ev-
ery third pixel come from the respective image. This guar-
antees that there will be 3 conditionally independent views.
To explore train-test variation, we dim pixel p in the image
by exp (λ (‖p− p0‖2−0.4)), where p0 is the image center
and the distance is normalized to have maximum value 1.
We show example images for λ = 0 (train) and λ = 5 (a
possible test distribution) in Figure 3.

Risk estimation. We use unsupervised risk estimation (The-
orem 2.2) to estimate the risk of a model trained on λ = 0
and tested on various values of λ ∈ [0, 10]. We trained the
model with AdaGrad (Duchi et al., 2010) on 10, 000 train-
ing examples, and used 10, 000 test examples to estimate
the risk. To solve for π and µ in (4), we first use the tensor
power method from Anandkumar et al. (2013) to initialize,
and then locally minimize a weighted `2-norm of the mo-
ment errors with L-BFGS. As a baseline, we take the valida-
tion error for λ = 0 (i.e., assume train = test), as well as the
predictive entropy −

∑
j pθ(j | x) log pθ(j | x) on the test

set (i.e., assume the predictions are well-calibrated). The
results are shown in Figure 4a; both the tensor method in
isolation and tensor + L-BFGS estimate the risk accurately,
with the latter performing slightly better.

Domain adaptation. We next test the efficacy of our
learning algorithm. For θ0 we used the trained model at
λ = 0, using T = 400, 000 random projections to estimate
∇Rlinear, and then minimizing over ‖θ‖2≤ 10. The results
are shown in Figure 4b. For small values of λ, Algorithm 1
is less data-efficient than the baseline of directly using θ0.
However, our algorithm is far more robust as λ increases,
and tracks the performance of an oracle that minimizes the
(supervised) test error subject to ‖θ‖2≤ 10.

Semi-supervised learning. Finally, to test the semi-
supervised aspect of our method, we also considered a θ0

that was obtained from only 300 training examples, again at
λ = 0. The tensor method sometimes led to bad initializa-
tions, in which case we obtained a different θ0 by training
with a smaller step size. The results are shown in Figure 4c.
We generally outperform the baseline of θ0, but our learned
parameters are higher-variance than before, seemingly due
to higher condition number of the matrices Pv,v′ .

Summary. Our experiments show that given 3 views, we
can estimate the risk and perform domain adaptation, even
from a small amount of supervised data.
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Figure 4: Results on the modified MNIST data set. (a) Risk estimation for varying degrees of distortion λ. (b) Transfer
learning with 10, 000 training and 10, 000 test examples. (c) Transfer learning with 300 training and 10, 000 test examples.

7. Discussion
We have presented a method for estimating the risk from
unlabeled data, which relies only on assumptions about
the conditional independence structure and hence makes no
parametric assumptions about the true distribution. More-
over, using the identifiability index, we have established cri-
teria under which the optimistic risk R̃ equals the true risk
R. We require only a “seed model” θ0 that does sufficiently
better than random guessing (Proposition 4.3), from which
we can then learn from only unlabeled data (Corollary 3.2).
This seed model could have been trained on a related do-
main, on a small amount of supervised data, or any combina-
tion of the two, and thus provides a pleasingly general con-
tract that highlights the similarities between domain adapta-
tion and semi-supervised learning.

Both our work and previous work on unsupervised risk esti-
mation focuses on the model predictions, rather than the full
distribution of data, which allows efficient estimation of the
risk even though the data distribution itself is treated non-
parametrically. This “semi-parametric approach” has been
well-studied in the econometrics literature (Powell, 1994),
which to us presents an exciting opportunity to import a new
set of tools into the sphere of machine learning. Economet-
rics has also used the generalized method of moments as
a tool for handling model mis-specification (Hansen, 1982;
Newey & McFadden, 1994), further suggesting a conver-
gence of tools and goals.

Unsupervised risk estimation touches upon the recently-
posed problem of what Bottou (2015) calls machine learn-
ing with contracts, which asks that a machine learning sys-
tem satisfy a well-defined input-output contract in analogy
with software systems (Sculley et al., 2015). Theorem 2.2
provides the contract that under the 3-view assumption the
test error is close to our estimate of the test error. This con-
trasts with the typical weak contract that if train and test are
similar, then the test error is close to the training error.

The most restrictive part of our framework is the 3-view as-
sumption, which may be inappropriate if the views are not

completely independent or if the data have other structure
that is not well-captured in terms of multiple views. Since
Balasubramanian et al. (2011) obtain results under Gaus-
sianity (which would be implied by many somewhat depen-
dent views), we are optimistic that unsupervised risk estima-
tion is possible for a wider family of structures. Along these
lines, we pose the following two questions:

Open question. In the multi-view setting, suppose that the
views are not completely independent. Is it still possible to
estimate the risk without assuming a distribution over the
losses? How does the degree of independence affect the
number of views needed?

Open question. Given a general Bayes net structure on x
and y, when is unsupervised risk estimation possible?

On a more technical level, while Algorithm 1 accurately
computes the gradient, it is slow, and more sophisticated
approaches would likely work better. In addition, though
Lemma 3.3 provides some guidance, we do not have a clear
algorithm for optimizing R(θ) in the case that the fv are
non-linear in θ (e.g. for neural nets); a general algorithm for
non-linear, non-convex losses would be desirable. Finally,
we believe the correct dependence in Theorem 4.4 should
be exp(−C · (ε/k)2d), which likely requires a more precise
argument than the Lipschitz bound presented here.

The results of this paper have caused us to adopt the fol-
lowing perspective: To handle unlabeled data, we should
make generative structural assumptions, but still optimize
discriminative model performance. This hybrid approach
allows us to satisfy the traditional machine learning goal of
predictive accuracy, while handling lack of supervision and
under-specification in a principled way. Perhaps, then, what
is needed for learning is to understand the structure of a do-
main.
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A. Details of Computing R̃ from µ

In this section we show how, given Ā, µ, and π, we can efficiently compute

R̃(θ) = Ā(θ)− max
σ∈Sym(k)

k∑
j=1

πσ(j)

3∑
v=1

(µσ(j),v)j . (17)

The only bottleneck is the maximum over σ ∈ Sym(k), which would naı̈vely require considering k! possibilities. However,
we can instead cast this as a form of maximum matching. In particular, form the k × k matrix

Xi,j = πi

3∑
v=1

(µi,v)j . (18)

Then we are looking for the permutation σ such that
∑k
j=1Xσ(j),j is maximized. If we consider each Xi,j to be the weight

of edge (i, j) in a complete bipartite graph, then this is equivalent to asking for a matching of i to j with maximum weight,
hence we can maximize over σ using any maximum-weight matching algorithm such as the Hungarian algorithm, which runs
in O

(
k3
)

time (Tomizawa, 1971; Edmonds & Karp, 1972).

B. Proof of Theorem 2.2
Preliminary reductions. Our goal is to estimate R̃ to error ε (with probability of failure 1− δ) in poly

(
k, π−1

min, λ
−1, τ

)
·

log(1/δ)
ε2 samples. Since R̃ is a scalar parameter, if we can estimate R̃ to error ε with any fixed probability of success

1 − δ0 > 1/2, then by taking the median of O (log(1/δ)/δ0) independent estimates, we can amplify the probability of
success to 1− δ. In this argument we will focus on achieving a probability of success of 3/4.

Letting Rσlinear be the linear part of the risk if the labels are permuted by σ, note that

R̃ = Ā−min
σ
Rσlinear (19)

= Ā−min
σ

k∑
j=1

πσ(j)

3∑
v=1

(µσ(j),v)j (20)

Note that 0 ≤ πσ(j) ≤ 1 and −τ ≤ (µσ(j),v)j ≤ τ . Therefore, as long as each of the quantities (Ā, π, µ) can be estimated to
error ε in poly

(
k, π−1

min, λ
−1, τ

)
/ε2 samples, by taking an appropriately scaled down ε (roughly kτ times smaller to account

for the product terms of π with µ), we can estimate the entire expression for R̃ to within error ε as well. We therefore focus
the remainder of the argument on estimating Ā, π, and µ individually.

Estimatimg Ā. Remember that Ā = Ex[A(θ;x)], and that Ex[A2] ≤ τ2 by assumption. Therefore, Ā can be estimated to
error ε (with probability, say, 11/12) using poly(τ)/ε2 samples.

Estimating µ. Estimating π and µ is mostly an exercise in interpreting Theorem 7 of Anandkumar et al. (2012), which we
recall below, modifying the statement slightly to fit our language.

Theorem B.1 (Anandkumar et al. (2012)). Let Pv,v′
def
= E[hv(x) ⊗ hv′(x)], and P1,2,3

def
= E[h1(x) ⊗ h2(x) ⊗ h3(x)].

Also let P̂v,v′ and P̂1,2,3 be sample estimates of Pv,v′ , P1,2,3 that are (for technical convenience) estimated from independent
samples of size m. Let ‖T‖F denote the `2-norm of T after unrolling T to a vector. Suppose that:

• P
[
‖P̂v,v′ − Pv,v′‖2≤ Cv,v′

√
log(1/δ)

m

]
≥ 1− δ for {v, v′} ∈ {{1, 2}, {1, 3}}, and

• P
[
‖P̂1,2,3 − P1,2,3‖F≤ C1,2,3

√
log(1/δ)

m

]
≥ 1− δ.
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Then, there exists constants C, m0, δ0 such that the following holds: if m ≥ m0 and δ ≤ δ0 and√
log(k/δ)

m
≤ C · minj 6=j′‖µj,3 − µj′,3‖2·σk(P1,2)

C1,2,3 · k5 · κ(M1)4
· δ

log(k/δ)
· ε,√

log(1/δ)

m
≤ C ·min

{
minj 6=j′‖µj,3 − µj′,3‖2·σk(P1,2)2

C1,2 · ‖P1,2,3‖F ·k5 · κ(M1)4
· δ

log(k/δ)
,
σk(P1,3)

C1,3

}
· ε,

then with probability at least 1 − 5δ, we can output M̂3 = [µ̂1,3 · · · µ̂k,3] with the following guarantee: there exists a
permutation σ ∈ Sym(k) such that for all j ∈ {1, . . . , k},

‖µ̂j,3 − µσ(j),3‖2≤ max
j′
‖µj′,3‖2·ε. (21)

By symmetry, we can use Theorem B.1 to recover each of the matrices Mv , v = 1, 2, 3, up to permutation of the columns.
Furthermore, Anandkumar et al. (2012) show in Appendix B.4 of their paper how to match up the columns of the different
Mv , so that only a single unknown permutation is applied to each of the Mv simultaneously. We will set δ = 1/180, which
yields an overall probability of success of 11/12 for this part of the proof.

We now analyze the rate of convergence implied by Theorem B.1. Note that we can take C1,2,3 =

O
(√

E[‖h1‖22‖h2‖22‖h3‖22]
)

, and similarly Cv,v′ = O
(√

E[‖hv‖22‖hv′‖22]
)

. Then, since we only care about polyno-

mial factors, it is enough to note that we can estimate the Mv to error ε given Z/ε2 samples, where Z is polynomial in the
following quantities:

1. k,

2. max3
v=1 κ(Mv), where κ denotes condition number,

3.
√

E[‖h1‖22‖h2‖22‖h3‖22]

(minj,j′‖µj,v−µj′,v‖2)·σk(Pv′,v′′ )
, where (v, v′, v′′) is a permutation of (1, 2, 3),

4. ‖P1,2,3‖2
(minj,j′‖µj,v−µj′,v‖2)·σk(Pv′,v′′ )

, where (v, v′, v′′) is as before, and

5.
√

E[‖hv‖22‖hv′‖22]

σk(Pv,v′)
.

6. maxj,v‖µj,v‖2.

It suffices to show that each of these quantities are polynomial in k, π−1
min, τ , and λ−1.

(1) k is trivially polynomial in itself.

(2) Note that κ(Mv) ≤ σ1(Mv)/λ ≤ ‖Mv‖F /λ. Furthermore, ‖Mv‖2F=
∑
j‖E[hv | j]‖22≤

∑
j E[‖hv‖22| j] ≤ kτ2. In all,

κ(Mv) ≤
√
kτ/λ, which is polynomial in k and τ/λ.

(3) We first note that minj 6=j′‖µj,v − µj′,v‖2=
√

2 minj 6=j′‖Mv(ej − ej′)‖2/‖ej − ej′‖2≥ σk(Mv). Also, σk(Pv′,v′′) =
σk(Mv′ diag(π)Mv′′) ≥ σk(Mv′)πminσk(Mv′′). We can thus upper-bound the quantity in (3.) by√

E[‖h1‖22‖h2‖22‖h3‖22]√
2πminσk(M1)σk(M2)σk(M3)

≤ τ3

√
2πminλ3

,

which is polynomial in π−1
min, τ/λ.
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(4) We can perform the same calculations as in (3), but now we have to bound ‖P1,2,3‖2. However, it is easy to see that

‖P1,2,3‖2 =
√
‖E[h1 ⊗ h2 ⊗ h3]‖22

≤
√

E[‖h1 ⊗ h2 ⊗ h3‖22]

=
√

E[‖h1‖22‖h2‖22‖h3‖22]

=

√√√√ k∑
j=1

πj

3∏
v=1

E[‖hv‖22| y = j]

≤ τ3,

which yields the same upper bound as in (3).

(5) We can again perform the same calculations as in (3), where we now only have to deal with a subset of the variables, thus
obtaining a bound of τ2

πminλ2 .

(6) We have ‖µj,v‖2≤
√
E[‖hv‖22| y = j] ≤ τ .

In sum, we have shown that with probability 11
12 we can estimate each µj,v to `2 error ε using poly

(
k, π−1

min, λ
−1, τ

)
/ε2

samples. It now remains to estimate π.

Estimating π. This part of the argument follows Appendix B.5 of Anandkumar et al. (2012). Noting that π = M−1
1 E[h1],

we can estimate π as π̂ = M̂1
−1

Ê[h1], where Ê denotes the empirical expectation. Hence, we have

‖π − π̂‖∞ ≤
∥∥∥(M̂1

−1
−M−1

1 )E[h1] +M−1
1 (Ê[h1]− E[h1]) + (M̂1

−1
−M−1

1 )(Ê[h1]− E[h1])
∥∥∥
∞

≤ ‖M̂1
−1
−M−1

1 ‖F︸ ︷︷ ︸
(i)

‖E[h1]‖2︸ ︷︷ ︸
(ii)

+ ‖M−1
1 ‖F︸ ︷︷ ︸

(iii)

‖Ê[h1]− E[h1]‖2︸ ︷︷ ︸
(iv)

+ ‖M̂1
−1
−M−1

1 ‖F︸ ︷︷ ︸
(i)

‖Ê[h1]− E[h1]‖2︸ ︷︷ ︸
(iv)

.

We will bound each of these factors in turn:

(i) ‖M̂1
−1
− M−1

1 ‖F : let E1 = M̂1 − M1, which by the previous part satisfies ‖E1‖F≤
√
kmaxj‖µ̂j,1 − µj,1‖2=

poly
(
k, π−1

min, λ
−1, τ

)
/
√
m. Therefore:

‖M̂1
−1
−M−1

1 ‖F ≤ ‖(M1 + E1)−1 −M−1
1 ‖F

= ‖M−1
1 (I + E1M

−1
1 )−1 −M−1

1 ‖F
≤ ‖M−1

1 ‖F ‖(I + E1M
−1
1 )−1 − I‖F

≤ kλ−1σ1

(
I + E1M

−1
1 )−1 − I

)
≤ kλ−1 σ1(E1M

−1
1 )

1− σ1(E1M
−1
1 )

≤ kλ−2 ‖E1‖F
1− λ−1‖E1‖F

≤
poly

(
k, π−1

min, λ
−1, τ

)
1− poly

(
k, π−1

min, λ
−1, τ

)
/
√
m
· 1√

m
.

We can assume that m ≥ poly
(
k, π−1

min, λ
−1, τ

)
without loss of generality (since otherwise we can trivially obtain

the desired bound on ‖π − π̂‖∞ by simply guessing the uniform distribution), in which case the above quantity is
poly

(
k, π−1

min, λ
−1, τ

)
· 1√

m
.

(ii) ‖E[h1]‖2: we have ‖E[h1]‖2≤
√
E[‖h1‖22] ≤ τ .

(iii) ‖M−1
1 ‖F : since ‖X‖F≤

√
kσ1(F ), we have ‖M−1

1 ‖F≤
√
kλ−1.
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(iv) ‖Ê[h1]− E[h1]‖2: with any fixed probability (say 11/12), this term is O
(√

E[‖h1‖22]
m

)
= O

(
τ√
m

)
.

In sum, with probability at least 11
12 all of the terms are poly

(
k, π−1

min, λ
−1, τ

)
, and at least one factor in each term has a 1√

m

decay. Therefore, we have ‖π − π̂‖∞≤ poly
(
k, π−1

min, λ
−1, τ

)
·
√

1
m .

Since we have shown that we can estimate each of Ā, π, and µ individually with probability 11
12 , we can also estimate R̃ with

probability 3
4 , thus completing the proof.

C. Proofs of Theorem 3.1 and Corollary 3.2
Proof of Theorem 3.1. First, we note that Theorem 2.2 can be extended to the case where instead of just estimating µ, we
also estimate gt = u>t ∇θRlinear. Since re-proving Theorem 3.1 in this case would be tedious, we simply highlight the main
differences.

First, M is now a 2k × k matrix rather than a k × k matrix; moreover, since all we do to M is add k additional rows, the
minimum singular value λ can only increase (which would decrease the sample complexity). On the other hand, τ could
increase to τ2 + B2 once we add in u>∇θhv . To deal with this, we first scale u>∇θfv down by a factor of B (and then
scale it up afterwards), which is why our final error bound will depend on Bε rather than just ε. Finally, πmin and k remain
unchanged. We note that we need the slightly stronger guarantee that Rσ(θ) and u>t ∇θRσlinear are uniformly well-estimated
for all σ, which is a straightforward consequence of Theorem B.1.

Now, we can assume that for all t = 1, . . . , T (where T = O
(
d log(d/δ)/ε2

)
), we successfully estimate each Rσ to within

error ε/5 with probability 1− δ/2 (where we union bound over t, using the fact that we the number of samples m is required
to grow with log(T/δ)). Since ε < gap(θ0), we thus necessarily recover the correct permutation σ, and can undo it to obtain
ĝt such that |ĝt − u>t ∇θR̃linear‖≤ ε′, where ε′ = Bε/5. Let εt = ĝt − u>t ∇θR̃linear. We then have∥∥∥∥∥ 1

T

T∑
t=1

utĝt −∇θR̃linear

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

T

T∑
t=1

utu
>
t ∇θR̃linear −∇θR̃linear

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

T

T∑
t=1

ut(u
>
t ∇θR̃linear − ĝt)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

T

T∑
t=1

utu
>
t − I

∥∥∥∥∥
op

∥∥∥∇θR̃linear

∥∥∥
2

+
1

T

∥∥∥∥∥
T∑
t=1

εtut

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

T

T∑
t=1

utu
>
t − I

∥∥∥∥∥
op

∥∥∥∇θR̃linear

∥∥∥
2

+
1

T
‖[u1 · · · uT ]‖op ‖ε1:T ‖2

≤ 3B

∥∥∥∥∥ 1

T

T∑
t=1

utu
>
t − I

∥∥∥∥∥
op

+ ε′

∥∥∥∥∥ 1

T

T∑
t=1

utu
>
t

∥∥∥∥∥
1
2

op

.

Now, by Theorem 1.2 of Tropp (2012), we have for ε < 1 that

P

[
σmax

(
1

T

T∑
t=1

utu
>
t

)
≥ 1 + ε/5

]
≤ d exp

(
−ε

2T

75d

)
. (22)

Thus, setting T = 75d
ε2 log(2d/δ), we get that, with probability 1− δ/2, we have∥∥∥∥∥ 1

T

T∑
t=1

utĝt −∇θR̃linear

∥∥∥∥∥
2

≤ 3Bε/5 + 2ε′ = Bε, (23)

as was to be shown.

Proof of Corollary 3.2. Since θ0 ∈ Θ0, we know that ∇θ0R̃linear = ∇θ0Rlinear. Now note that θ> (ĝ −∇θ0Rlinear) ≤
‖θ‖2‖ĝ − ∇θ0Rlinear‖2≤ εBρ for all θ with ‖θ‖2≤ ρ. In addition, by standard Rademacher complexity bounds we have
with probability 1 − δ that ‖Ā(θ) − 1

m

∑m
i=1A(θ;x(i))‖2≤ εBρ for all ‖θ‖2≤ ρ, provided that m = Ω

(
log(1/δ)

ε2

)
, since

A(θ;x(i)) is B-Lipschitz. Putting these together, the result follows by a standard uniform convergence argument.
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D. Proof of Lemma 3.3
Recall that we are given θ0 ∈ Θ0, and θ such that Ex∼p∗

[
maxkj=1|f(θ;x, j)− f(θ0;x, j)|

]
≤ 1

2 (gap(θ) + gap(θ0)). Our
goal is to show that θ ∈ Θ0 as well.

By the definition of gap(θ0), we have Rσ(θ0) ≥ R(θ0) + gap(θ0) for all σ 6= id. Assume for the sake of contradiction that
R̃(θ) 6= R(θ); then again by the definition of gap, there exists a σ 6= id with Rσ(θ) ≤ R(θ)− gap(θ).

To derive a contradiction, we will study Rlinear and Rσlinear. We have that

Rlinear(θ0) ≤ Rσlinear(θ0)− gap(θ0) (24)
≤ |Rσlinear(θ0)−Rσlinear(θ)|+Rσlinear(θ)− gap(θ0) (25)
≤ |Rσlinear(θ0)−Rσlinear(θ)|+Rlinear(θ)− (gap(θ0) + gap(θ)) (26)
≤ |Rσlinear(θ0)−Rσlinear(θ)|+|Rlinear(θ0)−Rlinear(θ)|+Rlinear(θ0)− (gap(θ0) + gap(θ)) . (27)

On the other hand, for all permutations σ we have:

|Rσlinear(θ0)−Rσlinear(θ)| =

∣∣∣∣∣∣
k∑
j=1

πjE[f(θ0;x, σ(j))− f(θ;x, σ(j)) | y = j]

∣∣∣∣∣∣ (28)

≤
k∑
j=1

πjE
[

k
max
j′=1
|f(θ0;x, j′)− f(θ;x, j′)|

∣∣∣ y = j

]
(29)

= E
[

k
max
j′=1
|f(θ0;x, j′)− f(θ;x, j′)|

]
(30)

<
1

2
(gap(θ) + gap(θ0)) . (31)

Substituting this in for both Rσlinear and Rlinear = Rid
linear in (27) above yields the desired contradiction and hence completes

the proof.

E. Proof of Proposition 4.3
First, suppose that p∗ ∼ ν′. Note that (µj)j − (µj)j′ measures how much larger E[− log pθ(j | x) | y = j] would become
if we assign class j to label j′. Therefore, the condition γ(θ) > 0 implies that E[− log pθ(j

′ | x) | y = j] > E[− log pθ(j |
x) | y = j] for all j 6= j′. Therefore, any σ 6= id will have Rσ(θ) > R(θ), and so R̃(θ) = R(θ).

Next, suppose that p∗ ∼ ν. Then, we have

P[R̃(θ) ≤ r0] = P[min
σ
Rσ(θ) ≤ r0] (32)

= P[min
σ

E[− log pθ(σ(y) | x)] ≤ r0] (33)

≤ P[min
σ

D (pθ(σ(y) | x) ‖ p∗(y | x)) ≤ r0] (34)

≤
∑
σ

P[D (pθ(σ(y) | x) ‖ p∗(y | x)) ≤ r0] (35)

≤ k!αr0 . (36)

Putting these together, we have
max

ν̂∈{ν,ν′}
Pν̂ [R̃(θ) ≤ r0 ∧ R̃(θ) 6= R(θ)] ≤ k!αr0 , (37)

as was to be shown.

F. Extension of Proposition F.1
In this section, we establish the following extension of Proposition F.1:
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Proposition F.1. Suppose that p∗ ∼ ν. Then for any 0 < ε < 2, we have the uniform false negative bound

P[∃θ, R̃(θ) < r0] ≤ k!NΘ((ε/4
√
k)4)αr0+ε, (38)

where NΘ is the covering number of Θ under D (· ‖ ·).

Note that NΘ is typically exponential in the dimension of Θ; comparing to e.g. Theorem 4.4 below, we thus need Θ to have
smaller dimension than the model family of p∗ for (38) to be non-trivial (which could be true in e.g. transfer learning settings
where we tune a subset of the parameters to a new domain).

Proof of Proposition F.1. We want to bound
P[∃θ ∈ Θ, R̃(θ) ≤ r0]. (39)

To start, let Q be a minimal covering of Θ under D (· ‖ ·) of radius ε0, where ε0 will be chosen later. We will replace each
q ∈ Q with the distribution q = (1− δ)q + δu, where u is the uniform distribution and δ > 0 will also be chosen later. Let
Q denote this new set of distributions.

By the same logic as Proposition 4.3, the probability that minq∈Q R̃(q) ≤ r0 + ε is at most k! |Q|αr0+ε. We would now like
to use this to say something about Θ. We will be able to do so with the following lemma:

Lemma F.2. Suppose that D (p ‖ q) ≤ ε0. Then, for all distributions p∗,

D (p∗ ‖ q) ≤ D (p∗ ‖ p) + log

(
1

1− δ

)
+ (k/δ)

√
ε0/2. (40)

Roughly, this says: “if q covers p and p covers p∗, then q covers p∗”. For our purposes, we will set δ =
√
k(ε0/8)1/4.

Assuming that δ ≤ 1/2, we have the bound log 1
1−δ ≤ 2δ, so that Lemma F.2 would imply the bound D (p∗ ‖ q) ≤

D (p∗ ‖ p) + 2
√
k(2ε0)1/4.

To apply Lemma F.2, consider the event E that minθ∈Θ R̃(θ) ≤ r0. In the following argument, we will let pσ denote the
distribution with pσ(y | x) = p(σ(y) | x).

The eventE implies that there exists pθ, σ with D (p∗ ‖ pσθ ) ≤ r0, and becauseQ covers Θ, there is also a q with D (pθ ‖ q) ≤
ε0 (and hence also D (pσθ ‖ qσ) ≤ ε0). Invoking Lemma F.2, there is thus a q ∈ Q such that D (p∗ ‖ qσ) ≤ r0 +2

√
k(2ε0)1/4.

We will now choose ε0 = (ε/4
√
k)4, which is enough to ensure that D (p∗ ‖ qσ) ≤ r0 + ε; hence P[E] ≤ P[minq∈Q R̃(q) ≤

r0 + ε] ≤ k! |Q|αr0+ε, as was to be shown.

Two remaining details are to check that δ < 1/2, and to prove Lemma F.2. For the first, since δ =
√
k(ε0/8)1/4 <√

k(ε/4
√
k) = ε/4, it suffices to constrain ε < 2, which we assumed. We now turn to Lemma F.2.

Proof of Lemma F.2. We will first prove the equivalent result for KL divergence KL (· ‖ ·) (instead of the averaged KL
divergence D (· ‖ ·)). Note that

KL (p∗ ‖ q)−KL (p∗ ‖ p) = Ep∗
[
log

p(x)

q(x)

]
≤ Ep∗

[
max

(
log

p(x)

q(x)
, 0

)]
(i)

≤ k

δ
Eq
[
max

(
log

p(x)

q(x)
, 0

)]
(ii)

≤ k

δ
Eq
[
max

(
p(x)− q(x)

q(x)
, 0

)]
=
k

δ
‖p− q‖TV

≤ k

δ
‖p− q‖TV ,
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where (i) uses the fact that p∗ ≤ (k/δ)q and (ii) uses log(a/b) ≤ (a − b)/b for a ≥ b. We then note that ‖p − q‖TV≤√
KL (p ‖ q) /2 by Pinsker’s inequality, and also that KL (p∗ ‖ p) ≤

∫
p∗(x) log p∗(x)

(1−δ)p(x)dx ≤ KL (p∗ ‖ p) + log
(

1
1−δ

)
.

Averaging over x ∼ π, we have

D (p∗ ‖ q) ≤ D (p∗ ‖ p) + log

(
1

1− δ

)
+ (k/δ)Ex∼π

[√
KL (p(Y | x) ‖ q(Y | x))

]
(41)

≤ D (p∗ ‖ p) + log

(
1

1− δ

)
+ (k/δ)

√
D (p ‖ q) /2, (42)

which completes the proof.

G. Justification of Some Details for Theorem 4.4
G.1. Treating pβ as a point mass

Here we justify why, for sufficiently large τ , if each βj ∼ N (0, ·Id×d), then we can treat pβ,τ (Y = j | x) ∝ exp
(
τβ>j φ(x)

)
as a point mass. Precisely, we have the following result:

Lemma G.1. Let βj ∼ N (0, Id×d). For any τ , let

pβ,τ (Y = j | x) ∝ exp
(
τ · β>j φ(x)

)
, and let pβ,∞(Y = j | x)

def
= I

[
j = arg max

j′
β>j′φ(x)

]
. (43)

Then, if F is the family of functions f : X × Y → [−1, 1], we have, for every δ > 0,

lim
τ→∞

Pβ1:k∼N (0,I)

[
sup
f∈F

Epβ,τ [f(x, y)]− Epβ,∞ [f(x, y)] > δ

]
= 0 (44)

In particular, since in light of (13) we only need to worry about the expectation of q(y | x), which itself lies in [0, 1], for any
desired error threshold δ the probability that the difference between Epβ,τ [q(y | x)] and Epβ,∞ [q(y | x)] exceeds δ goes to 0
uniformly (in q) as τ →∞. Since the constants we provide in Theorem 4.4 are slightly larger than those actually implied by
our proofs, there is some non-infinite value of τ that implies Theorem 4.4 with the stated constants, even though we otherwise
only establish the result for pβ,∞.

Proof of Lemma G.1. Note that the supremum in (44) is simply the expected total variational distance
Ex∼π [‖pβ,τ (Y | x)− pβ,∞(Y | x)‖TV ]. We then have

lim
τ→∞

Pβ1:k∼N (0,I) [Ex∼π [‖pβ,τ (Y | x)− pβ,∞(Y | x)‖TV ] > δ] (45)

≤ δ−1 lim
τ→∞

Eβ1:k,x [‖pβ,τ (Y | x)− pβ,∞(Y | x)‖TV ] (46)

(i)
= 0. (47)

To justify (i), note that since φ(x) 6= 0 almost surely, pβ,τ (y | x) → pβ,∞(y | x) almost surely as τ → ∞. Since total
variational distance is bounded by 1, by Lebesgue’s dominated convergence theorem, the limit of the expectation is indeed
zero.
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G.2. Approximating π by samples

Applying Lebesgue’s dominated convergence theorem at (i) below, we have

lim
m→∞

Pβ,x1:m

[
1

m

m∑
i=1

q(yβ(xi) | xi) ≥
1 + ε

k

]
= lim
m→∞

Eβ,x1,x2,...

[
I

[
1

m

m∑
i=1

q(yβ(xi) | xi) ≥
1 + ε

k

]]
(48)

(i)
= Eβ,x1,x2,...

[
lim
m→∞

I

[
1

m

m∑
i=1

q(yβ(xi) | xi) ≥
1 + ε

k

]]
(49)

= Eβ,x1,x2,...

[
I
[
Ex∼π[q(yβ(x) | x)] ≥ 1 + ε

k

]]
(50)

= Pβ
[
Ex∼π[q(yβ(x) | x)] ≥ 1 + ε

k

]
. (51)

G.3. Computing Lipschitz constants

Recall we want to show that the map β1:k 7→ t1:m
1:k is ‖Φ‖op-Lipschitz, and that the map (q(yβ(xi) | xi))mi=1 7→

1
m

∑m
i=1 q(yβ(xi) | xi) is (1/

√
m)-Lipschitz.

In the first case, remember that tij is defined to be β>j φ(xi)/‖φ(xi)‖2. Therefore, the map β 7→ t is in fact linear, with
corresponding matrix Φ>. The Lipschitz constant of a linear map is simply its operator norm, i.e. ‖Φ‖op, as claimed.

In the second case, our map is again linear, and is equivalent to the map v 7→ (1/m)1>v, where v ∈ Rm. This map has
Lipschitz constant (1/m)‖1‖2= 1/

√
m, again as claimed.

G.4. Modifying q to be Lipschitz

Let us be a bit more formal about how we modify q. We will define the function

rβ(x)
def
=

k∑
j=1

max

(
0, 1− 1

δ

k
max
i=1

(βi − βj)>
φ(x)

‖φ(x)‖2

)
q(Y = j | x). (52)

Therefore, rβ(x) ≥ q(yβ(x) | x) always, and will be bigger if there are other values βi such that β>i φ(x) is close to the
maximum.

Note that (βi − βj)> φ(x)
‖φ(x)‖2 is

√
2-Lipschitz, hence each term is

√
2
δ q(Y = j | x)-Lipschitz; since

∑
j q(Y = j | x) = 1,

the entire expression is
√

2
δ -Lipschitz, as claimed. We also have the following bound on its expectation:

Lemma G.2. For any x, if β1:k ∼ N (0, I), then

Eβ [rβ(x)] ≤ 1

k
+ δ. (53)

Proof. Since
∑k
j=1 q(Y = j | x) = 1, it suffices to show that for each j,

E
[
max

(
0, 1− δ−1 max

i
(βi − βj)>

φ(x)

‖φ(x)‖2

)]
≤ 1

k
+ δ. (54)

Let ti = β>i
φ(x)
‖φ(x)‖2 ; note that the ti are independent Gaussians with mean zero and variance 1. Note also that the term in

the expectation is always at most 1, and is only non-zero if either (i) tj is the largest of the ti (which occurs with probability
1/k) or if (ii) M < tj < M + δ, where M = maxi 6=j ti. Conditioned on M , this latter event always has probability at most
δ√
2π

< δ (since the density of a Gaussian is bounded everywhere by 1√
2π

). Marginalizing over M , the overall probability is
also at most δ, and so the overall expectation in (54) is at most 1

k + δ, as was to be shown.
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G.5. Obtaining the final bound

Take δ = ε
2k , so that E[rβ(x)] ≤ 1+ε/2

k . Also define r = 1
m

∑m
i=1 rβ(xi). Then, since q(yβ(x) | x) ≤ rβ(x) (see the

remarks in G.4), we have

Pβ

[
1

m

m∑
i=1

q(yβ(xi) | xi) ≥
1 + ε

k

]
≤ Pβ

[
1

m

m∑
i=1

rβ(xi) ≥
1 + ε

k

]
(55)

= Pβ
[
r ≥ 1 + ε

k

]
(56)

≤ Pβ [r − E[r] ≥ ε

2k
] (57)

≤ exp

(
− ε4

64k4

m

‖Φ‖2op

)
, (58)

where the final line invokes Theorem 5.1, using the fact that β 7→ r is (‖Φ‖op·(2
√

2k/ε) · (1/
√
m))-Lipschitz.

G.6. Almost sure convergence

We have

lim
m→∞

Pβ,x1:m

[
1

m

m∑
i=1

q(yβ(xi) | xi) ≥
1 + ε

k

]
(59)

(58)
≤ lim

m→∞
Ex1:m

[
exp

(
− ε4

64k4

m

‖Φ(x1:m)‖2op

)]
(60)

(i)
= Ex1,x2,...

[
lim
m→∞

exp

(
− ε4

64k4

m

‖Φ(x1:m)‖2op

)]
(61)

(ii)
= exp

(
− ε4

64k4
γ−1

)
, (62)

where (i) is Lebesgue’s dominated convergence theorem and (ii) is because ‖Φ‖2op/m→ γ−1 almost surely as m→∞.

H. Justification of Some Details for Theorem 4.5
H.1. Proof of Lemma 5.2

Let f : C → [0, 1] be an optimal fractional covering. For t = 1, . . . , T , sample St ∈ C with probability f(St)
Nfrac

. Then
for any fixed t and p ∈ P , we have P[p is covered by St] ≥ 1

Nfrac
. After T = dNfrac log|P|e samples, we thus have

P[p is not covered by any St] ≤ (1 − 1
Nfrac

)Nfrac log|P| < e− log|P| = 1
|P| . So with non-zero probability, we cover all p ∈ P

after dNfrac log|P|e samples, and so N ≤ dNfrac log|P|e ≤ Nfrac(log|P|+1).
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H.2. Applying the minimax theorem

To expand on (16), we have

α∗r = min
ν

sup
f :U→{0,1}
‖f‖1=1

Ep∼ν

[ 1 ifBr(q) covers p︷ ︸︸ ︷∑
q:Br(q)3p

f(q)

]

(i)

≤ min
ν

sup
f :U→[0,1]
‖f‖1=1

Ep∼ν

[ ∑
q:Br(q)3p

f(q)

]

(ii)
= sup

f :U→[0,1]
‖f‖1=1

min
ν

Ep∼ν

[ ∑
q:Br(q)3p

f(q)

]

= sup
f :U→[0,1]
‖f‖1=1

min
p∈P

∑
q:Br(q)3p

f(q) =
1

Nfrac
,

Here (i) just relaxes the integer program to a linear program, and (ii) applies the following minimax theorem, which is
Theorem 4.1 of Sion (1958):

Theorem H.1. LetX and Y be any spaces, h a function onX×Y that is concave-convexlike. If for any c < infy supx h(x, y)
there exists a finite set X0 ⊂ X such that infy maxx∈X0

h(x, y) > c, then infy supx h(x, y) = supx infy h(x, y).

Here concave-convexlike is defined as follows: (i) for every x1, x2 ∈ X and t ∈ [0, 1], there is a x0 ∈ X such that
t · h(x1, y) + (1− t) · h(x2, y) ≤ h(x0, y) for all y ∈ Y ; (ii) for every y1, y2 ∈ Y and t ∈ [0, 1], there is a y0 ∈ Y such that
t · h(x, y1) + (1− t) · h(x, y2) ≥ h(x, y0) for all x ∈ X .

We intend to apply Theorem H.1 with X = Ffinite(U ; 1) (the space of finitely supported functions from U to [0, 1] satisfying
‖f‖1= 1), Y = ∆(P) (the space of probability distributions on P), and h(f, ν) = Ep∼ν

[∑
q:Br(q)3p f(q)

]
.

First, we check the convexity and concavity properties. Given ν1, ν2 ∈ ∆(P) and t ∈ [0, 1], we can clearly take ν0 =
tν1 + (1 − t)ν2. Similarly, given f1, f2 ∈ Ffinite(U ; 1) and t ∈ [0, 1], we can clearly take f0 = tf1 + (1 − t)f2, which is
finitely supported if f1 and f2 are.

Next, take some c < infν∈∆(P) supf∈Ffinite(U ;1) h(f, ν). This means that in particular, c < infν∈∆(P) supq ν(Br(q)) = α∗r .
Since α∗r is continuous by assumption, we thus also have that c < infν∈∆(P) supq ν(Bq(r − δ)) for some δ > 0. Now,
for some ε (to be determined later), take a finite ε4-covering q1, . . . , qN of P , and also set qn = (1 − ε)qn + εu, where
u is the uniform distribution. We claim that minNn=1 ν(Br(qn)) > c for all ν ∈ ∆(P), whence we can take the functions
fn = I[q = qn] and X0 = {fn}Nn=1 to satisfy the conditions of Theorem H.1.

To show this, we will show that for each q, Br−δ(q) ⊆ Br(qn) for some n, so that supq ν(Br−δ(q)) ≤ maxnn=1 ν(Br(qn)).
Indeed, take n such that D (q ‖ qn) ≤ ε4. By Lemma F.2, we then have that for any p ∈ Br−δ(q), D (p ‖ qn) ≤ D (p ‖ q) +

log
(

1
1−ε

)
+ (k/ε)

√
ε4/2. Since D (p ‖ q) ≤ r − δ, we can ensure that D (p ‖ qn) ≤ r for sufficiently small ε, as claimed.

H.3. Proof of Lemma 5.3

As before, let p = (1− δ)p + δu, where u is the uniform distribution; we will take δ =
√
ε. We will make extensive use of

the following helper lemma regarding the behavior of p, proved later in this section:

Lemma H.2. Let H(δ) = δ log
(

1
δ

)
+ (1− δ) log

(
1

1−δ

)
. Also suppose that δ < 1

2 . Then, for any p and q, we have:

KL (p ‖ q) ≤ KL (p ‖ q) + log

(
1

1− δ

)
(63)

KL (q ‖ p) ≥ (1− δ) KL (p ‖ q)−H(δ) (64)
KL (p ‖ q) ≤ (1− δ) KL (p ‖ q) +H(δ) (65)
KL (p ‖ q) ≤ 2(1− δ)‖p− q‖TV log(k/δ). (66)
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Also under the assumption δ < 1/2, we have log(1/(1 − δ)) ≤ 2δ, which we will often use to simplify some of the above
expressions. Now, starting with the actual proof, we have

KL (p ‖ q) = KL
(
p̂ ‖ q

)
+
(
KL (p ‖ q)−KL

(
p̂ ‖ q

))
(65)
≤ (1− δ) KL (p̂ ‖ q) +H(δ) +

(
KL (p ‖ q)−KL

(
p̂ ‖ q

))
.

Furthermore, we have

KL (p ‖ q)−KL
(
p̂ ‖ q

)
=

∫
p(x) log

p(x)

q(x)
dx−

∫
p̂(x) log

p̂(x)

q(x)
dx

= KL
(
p ‖ p̂

)
+

∫
(p(x)− p̂(x)) log

p̂(x)

q(x)
dx

≤ KL
(
p ‖ p̂

)
+

∣∣∣∣∫ (p(x)− p̂(x))dx

∣∣∣∣ log(k/δ)

≤ KL (p ‖ p̂) + 2δ + 2‖p− p̂‖TV log(k/δ)

≤ KL (p ‖ p̂) + 2δ + 2(‖p− p̂‖TV +‖p̂− p̂‖TV ) log(k/δ)

≤ ε+ 2δ + 2(
√
ε/2 + δ) log(k/δ),

in which case

KL (p ‖ q) ≤ (1− δ) KL (p̂ ‖ q) + ε+
√

2ε log(k/δ) +H(δ) + 2δ (log(k/δ) + 1)

≤ KL (p̂ ‖ q) +
√
ε
(

(
√

2 + 2) log(k) + (
√

2 + 3) log(1/
√
ε) + 4 +

√
ε
)

≤ KL (p̂ ‖ q) + 5
√
ε log(2k/ε).

For the second part, by symmetry we will suppose instead that KL (p̂ ‖ p) ≤ ε and prove the same inequality as before. We
have

KL (p ‖ q) = KL (p̂ ‖ q) + (KL (p̂ ‖ q)−KL (p̂ ‖ q)) + (KL (p ‖ q)−KL (p̂ ‖ q)) + (KL (p ‖ q)−KL (p ‖ q))
≤ KL (p̂ ‖ q) + 2δ +H(δ) + δKL (p ‖ q) + (KL (p ‖ q)−KL (p̂ ‖ q))
≤ KL (p̂ ‖ q) + 2δ +H(δ) + δ log(k/δ) + (KL (p ‖ q)−KL (p̂ ‖ q)) .

Using essentially the same argument as before, we have

KL (p ‖ q)−KL (p̂ ‖ q) =

∫
p(x) log

p(x)

q(x)
dx−

∫
p̂(x) log

p̂(x)

q(x)
dx

= −KL (p̂ ‖ p) +

∫
(p(x)− p̂(x)) log

p(x)

q(x)
dx

≤
∫
|p(x)− p̂(x)|log(k/δ)dx

= 2‖p− p̂‖TV log(k/δ)

≤ 2
(√

ε/2 + δ
)

log(k/δ),

in which case

KL (p ‖ q) ≤ KL (p̂ ‖ q) + 2δ +H(δ) + δ log(k/δ) + 2
(√

ε/2 + δ
)

log(k/δ)

= KL (p̂ ‖ q) +
√
ε
(

(
√

2 + 3) log(k) + (
√

2 + 4) log(1/
√
ε) + 4

)
≤ KL (p̂ ‖ q) + 5

√
ε log(2k/ε).

It only remains to prove Lemma H.2.
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Proof of Lemma H.2. First,

KL (p ‖ q) =

∫
p(x) log

p(x)

q(x)
dx

≤
∫
p(x) log

p(x)

(1− δ)q(x)
dx

= KL (p ‖ q) + log
1

1− δ
.

Next,

KL (p ‖ q) =

∫
[(1− δ)p(x) + δu(x)] log

(1− δ)p(x) + δu(x)

q(x)
dx

≥ (1− δ)
∫
p(x) log

(1− δ)p(x)

q(x)
dx+ δ

∫
u(x) log

δu(x)

q(x)
dx

= (1− δ) KL (p ‖ q) + δKL (u ‖ q)−H(δ)

≥ (1− δ) KL (p ‖ q)−H(δ).

In addition,

KL (p ‖ q) ≤ (1− δ) KL (p ‖ q) + δKL (u ‖ q)

≤ (1− δ)
(

KL (p ‖ q) + log
1

1− δ

)
+ δ

∫
u(x) log

u(x)

(1− δ)q(x) + δu(x)
dx

≤ (1− δ) KL (p ‖ q) + (1− δ) log
1

1− δ
+ δ log

1

δ
.

Finally,

KL (p ‖ q) ≤ KL (p ‖ q) + KL (q ‖ p)

= (1− δ)
∫

(p(x)− q(x)) (log p(x)− log q(x)) dx

≤ (1− δ)
∫
|p(x)− q(x)|log(k/δ)dx

= 2(1− δ)‖p− q‖TV log(k/δ).

H.4. Replacing P by a covering

Let f be a fractional covering of P of radius r0 − ε, and let P̂ be a covering of P of radius ε0, where ε0 will be determined
later. Then by Lemma 5.3, f is a fractional covering of P̂ of radius r0−ε+5

√
ε0 log(2k/ε0). However, again by Lemma 5.3,

note that any (non-fractional) covering of P̂ of radius r0 − ε + 5
√
ε0 log(2k/ε0) is also a (non-fractional) covering of P of

radius r0 − ε+ 10
√
ε0 log(2k/ε0). Combining with Lemma 5.2, we have

Nfrac(P, r0 − ε) ≥ Nfrac(P̂, r0 − ε+ 5
√
ε0 log(2k/ε0)) (67)

≥ N(P̂, r0 − ε+ 5
√
ε0 log(2k/ε0))/(1 + log|P̂|) (68)

≥ N(P, r0 − ε+ 10
√
ε0 log(2k/ε0))/(1 + log|P̂|). (69)

We want to take ε0 such that 10
√
ε0 log(2k/ε0) < ε. Here we will use the fact that

√
t log(1/t) ≤ 2.3t1/3, applied at

t = ε0/2k, to obtain 10
√
ε0 log(2k/ε0) < 23

√
2k(ε0/2k)1/3 = 23(

√
2kε0)1/3 < 26(

√
kε0)1/3, and hence we can take

ε0 = (ε/26)3/
√
k, as was to be shown. We also observe that this is less than 1/4 for any ε ≤ 1, so that the precondition of

Lemma 5.3 is always satisfied.


