Jacob Steinhardt Percy Liang

Stanford University

{jsteinhardt,pliang}@cs.stanford.edu

July 8, 2015

Structured Prediction Task

input x: \mathbf{v} \mathbf

J. Steinhardt & P. Liang (Stanford)

Reified Context Models

July 8, 2015 2 / 11

J. Steinhardt & P. Liang (Stanford)

< □ > < @

▶ < E > < E</p>

July 8, 2015 3 / 11

∃ >

J. Steinhardt & P. Liang (Stanford)

July 8, 2015 3 / 11

r	*0	**1	***C
v	*a	**i	***r

- coverage (short contexts)
 - better uncertainty estimates (precision)
 - stabler partially supervised learning updates

(日)

r	*0	**1	***C
v	*a	**i	***r

- coverage (short contexts)
 - better uncertainty estimates (precision)
 - stabler partially supervised learning updates

< □ > < @

• • • • • • •

r	*0	**1	***C
v	*a	**i	***r

- coverage (short contexts)
 - better uncertainty estimates (precision)
 - stabler partially supervised learning updates

< □ > < @

3 1 4 3

- r *0 **l ***c v *a **i ***r
 - coverage (short contexts)
 - better uncertainty estimates (precision)
 - stabler partially supervised learning updates
- r ro rol rolc v ra ral ralc
- expressivity (long contexts)
 - capture complex dependencies

A B F A B F

- r *0 **l ***C v *a **i ***r
 - coverage (short contexts)
 - better uncertainty estimates (precision)
 - stabler partially supervised learning updates
- r ro rol rolc v ra ral ralc
- expressivity (long contexts)
 - capture complex dependencies

• • • • • • •

< 口 > < 同

- r *0 **l ***C v *a **i ***r
 - coverage (short contexts)
 - better uncertainty estimates (precision)
 - stabler partially supervised learning updates
- r ro rol rolc v ra ral ralc
- expressivity (long contexts)
 - capture complex dependencies

• • • • • • •

< 口 > < 同

- r *0 **l ***c v *a **i ***r
 - coverage (short contexts)
 - better uncertainty estimates (precision)
 - stabler partially supervised learning updates
- r ro rol rolc v ra ral ralc
 - expressivity (long contexts)
 - capture complex dependencies
- r ro rol *olc
- v ra ral ***c
- y *0 *0l ***r
- \leftarrow best of both worlds
- * ** *** ****

< 3 > < 3</p>

July 8, 2015 4 / 11

input *x*: 1 2 1 C 2 7 1 C

J. Steinhardt & P. Liang (Stanford)

Reified Context Models

ま▶ ◀ 葺 ▶ 葺 ∽ � @ July 8, 2015 5 / 11

< ■ ▶ ■ つへの July 8, 2015 5/11

δIC anic input x: Y output y: v o 1 i С а n С context c: *0 *0l *olc V

Challenge: how to trade off contexts of different lengths?

J. Steinhardt & P. Liang (Stanford)

July 8, 2015 5 / 11

(日)

Challenge: how to trade off contexts of different lengths?

 \implies *Reify* contexts as part of model!

(日)

Given:

• context sets C_1, \ldots, C_L

Given:

- context sets C_1, \ldots, C_L
- features $\phi_i(c_{i-1}, y_i)$

Given:

- context sets C_1, \ldots, C_L
- features $\phi_i(c_{i-1}, y_i)$

Define the model

$$p_{\theta}(y_{1:L}, c_{1:L-1}) \propto \exp\left(\sum_{i=1}^{L} \theta^{\top} \phi_i(c_{i-1}, y_i)\right) \cdot \underbrace{\kappa(y, c)}_{\text{consistency}}$$

Given:

- context sets C_1, \ldots, C_L
- features $\phi_i(c_{i-1}, y_i)$

Define the model

$$p_{\theta}(y_{1:L}, c_{1:L-1}) \propto \exp\left(\sum_{i=1}^{L} \theta^{\top} \phi_i(c_{i-1}, y_i)\right) \cdot \underbrace{\kappa(y, c)}_{\text{consistency}}$$

Graphical model structure:

Given:

- context sets C_1, \ldots, C_L
- features $\phi_i(c_{i-1}, y_i)$

Define the model

$$p_{\theta}(y_{1:L}, c_{1:L-1}) \propto \exp\left(\sum_{i=1}^{L} \theta^{\top} \phi_i(c_{i-1}, y_i)\right) \cdot \underbrace{\kappa(y, c)}_{\text{consistency}}$$

Graphical model structure:

Given:

- context sets C_1, \ldots, C_L
- features $\phi_i(c_{i-1}, y_i)$

Define the model

$$p_{\theta}(y_{1:L}, c_{1:L-1}) \propto \exp\left(\sum_{i=1}^{L} \theta^{\top} \phi_i(c_{i-1}, y_i)\right) \cdot \underbrace{\kappa(y, c)}_{\text{consistency}}$$

Graphical model structure:

 $(C_1) (C_2) (C_3) (C_4)$ $(\phi_1) (\phi_2) (\phi_3) (\phi_4) (\phi_5)$ $(Y_1) (Y_2) (Y_3) (Y_4) (Y_5)$

inference via forward-backward!

Image: Image:

→ < E > < E >

• Select context sets C_i during forward pass of inference

- Select context sets C_i during forward pass of inference
- Greedily select contexts with largest mass

- Select context sets C_i during forward pass of inference
- Greedily select contexts with largest mass

- Select context sets C_i during forward pass of inference
- Greedily select contexts with largest mass

Image: 0

.

- Select context sets C_i during forward pass of inference
- Greedily select contexts with largest mass

Image: 0

► 4 3 ►

- Select context sets C_i during forward pass of inference
- Greedily select contexts with largest mass

- Select context sets C_i during forward pass of inference
- Greedily select contexts with largest mass

- Select context sets C_i during forward pass of inference
- Greedily select contexts with largest mass

- Select context sets C_i during forward pass of inference
- Greedily select contexts with largest mass

- Select context sets C_i during forward pass of inference
- Greedily select contexts with largest mass

Biases towards short contexts unless there is high confidence.

< < >> < <</p>

Model assigns probability to each prediction, so can predict on most confident subset.

Model assigns probability to each prediction, so can predict on most confident subset.

Measure precision (# of correct words) vs. recall (# of words predicted).

Model assigns probability to each prediction, so can predict on most confident subset.

Measure precision (# of correct words) vs. recall (# of words predicted).

o comparison: beam search

Measure precision (# of correct words) vs. recall (# of words predicted).

Decipherment task:

 $\mbox{cipher} \qquad \mbox{am}\mapsto 5, \mbox{ I}\mapsto 13, \mbox{what}\mapsto 54, \hdots ...$

Decipherment task:

cipher	am	\mapsto 5,	$I\mapsto$ 13,	what	\mapsto 54,
latent z	I	am	what	I	am

Decipherment task:

cipher	am	\mapsto 5,	$I\mapsto 13,$	what	\mapsto 54, \dots
latent z	Ι	am	what	I	am
output y	13	5	54	13	5

Decipherment task:

cipher	am	\mapsto 5, I	$I \mapsto 13,$	what	\mapsto 54, \dots
latent z	Ι	am	what	Ι	am
output y	13	5	54	13	5

Goal: determine cipher

Decipherment task:

cipher	am	\mapsto 5,	$I\mapsto 13,$	what	\mapsto 54, …
latent z	Ι	am	what	I	am
output y	13	5	54	13	5

Goal: determine cipher

Fit 2nd-order HMM with EM, using RCMs for approximate E-step.

Decipherment task:

cipher	am	\mapsto 5,	$I\mapsto 13,$	what	\mapsto 54, …
latent z	Ι	am	what	I	am
output <i>y</i>	13	5	54	13	5

Goal: determine cipher

Fit 2nd-order HMM with EM, using RCMs for approximate E-step.

• use learned emissions to determine cipher.

< 口 > < 同

.

Decipherment task:

cipher	am	\mapsto 5,	$I\mapsto 13,$	what	\mapsto 54, …
latent z	Ι	am	what	I	am
output y	13	5	54	13	5

Goal: determine cipher

Fit 2nd-order HMM with EM, using RCMs for approximate E-step.

- use learned emissions to determine cipher.
- again compare to beam search (Nuhn et al., 2013)

・ロト ・ 同ト ・ ヨト ・ ヨ

Fraction of correctly mapped words:

July 8, 2015 9 / 11

Context lengths increase smoothly during training:

(日)

Context lengths increase smoothly during training:

July 8, 2015 10 / 11

Context lengths increase smoothly during training:

Start of training: little information, short contexts.

J. Steinhardt & P. Liang (Stanford)

July 8, 2015 10 / 11

Context lengths increase smoothly during training:

Start of training: little information, short contexts. End of training: lots of information, long contexts.

J. Steinhardt & P. Liang (Stanford)

Reified Context Models

July 8, 2015 10 / 11

Discussion

RCMs provide both expressivity and coverage, which enable:

Discussion

RCMs provide both expressivity and coverage, which enable:

• More accurate uncertainty estimates (precision)

< □ > < @

• • • • • • •

- More accurate uncertainty estimates (precision)
- Better partially supervised learning updates

Image: Image:

.

- More accurate uncertainty estimates (precision)
- Better partially supervised learning updates

Related work:

• Coarse-to-fine inference (Petrov et al., 2006; Weiss et al., 2010)

• • • • • • •

- More accurate uncertainty estimates (precision)
- Better partially supervised learning updates

Related work:

- Coarse-to-fine inference (Petrov et al., 2006; Weiss et al., 2010)
- Certificates of optimality (Sontag, 2010)

- More accurate uncertainty estimates (precision)
- Better partially supervised learning updates

Related work:

- Coarse-to-fine inference (Petrov et al., 2006; Weiss et al., 2010)
- Certificates of optimality (Sontag, 2010)
- Tractable models (Poon & Domingos, 2011; Niepert & Domingos, 2014; Li & Zemel, 2014; S. & Liang, 2015)

< □ > < 同 > < 回 > < 回 > < 回 >

- More accurate uncertainty estimates (precision)
- Better partially supervised learning updates

Related work:

- Coarse-to-fine inference (Petrov et al., 2006; Weiss et al., 2010)
- Certificates of optimality (Sontag, 2010)
- Tractable models (Poon & Domingos, 2011; Niepert & Domingos, 2014; Li & Zemel, 2014; S. & Liang, 2015)

Reproducible experiments on Codalab: codalab.org/worksheets

イロト イヨト イヨト