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Figure 3: These figures show a subset of the tree learned from the 50,000 CIFAR-100 images. The top tree only

shows nodes for which there were at least 250 images. The ten shown at each node are those with the highest

probability under the node’s distribution. The second row shows three expanded views of subtrees, with nodes

that have at least 50 images. Detailed views of portions of these subtrees are shown in the third row.

Selecting a Single Tree We have so far described a procedure for generating posterior samples

from the tree structures and associated stick-breaking processes. If our objective is to find a single

tree, however, samples from the posterior distribution are unsatisfying. Following [17], we report a

best single tree structure over the data by choosing the sample from our Markov chain that has the

highest complete-data likelihood p({xn, �n}Nn=1 | {ν�}, {ψ�},α0,λ, γ).

5 Hierarchical Clustering of Images

We applied our model and MCMC inference to the problem of hierarchically clustering the CIFAR-

100 image data set
1
. These data are a labeled subset of the 80 million tiny images data [22]

with 50,000 32×32 color images. We did not use the labels in our clustering. We modeled the

images via 256-dimensional binary features that had been previously extracted from each image

(i.e., xn ∈ {0, 1}256) using a deep neural network that had been trained for an image retrieval task

[23]. We used a factored Bernoulli likelihood at each node, parameterized by a latent 256-dimensional

real vector (i.e., θ� ∈ R256
) that was transformed component-wise via the logistic function:

f(xn | θ�) =
256�

d=1

�
1 + exp{−θ(d)� }

�−x(d)
n

�
1 + exp{θ(d)� }

�1−x(d)
n

.

The prior over the parameters of a child node was Gaussian with its parent’s value as the mean.

The covariance of the prior (Λ in Section 3) was diagonal and inferred as part of the Markov chain.

We placed independent Uni(0.01, 1) priors on the elements of the diagonal. To efficiently learn the

node parameters, we used Hamiltonian (hybrid) Monte Carlo (HMC) [24], taking 25 leapfrog HMC

steps, with a randomized step size. We occasionally interleaved a slice sampling move for robustness.

1http://www.cs.utoronto.ca/˜kriz/cifar.html

6
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(a) Coalescent for a subset of Indo-European lan-
guages from WALS.
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(b) Data restoration on WALS. Y-axis is accuracy;
X-axis is percentage of data set used in experiments.
At 10%, there are N = 215 languages, H = 14
features and p = 94% observed data; at 20%, N =
430, H = 28 and p = 80%; at 30%: N = 645,
H = 42 and p = 66%; at 40%: N = 860, H =
56 and p = 53%; at 50%: N = 1075, H = 70
and p = 43%. Results are averaged over five folds
with a different 5% hidden each time. (We also tried
a “mode” prediction, but its performance is in the
60% range in all cases, and is not depicted.)

Figure 3: Results of the phylolinguistics experiments.

LLR (t) Top Words Top Authors (# papers)
32.7 (-2.71) bifurcation attractors hopfield network saddle Mjolsness (9) Saad (9) Ruppin (8) Coolen (7)

0.106 (-3.77) voltage model cells neurons neuron Koch (30) Sejnowski (22) Bower (11) Dayan (10)
83.8 (-2.02) chip circuit voltage vlsi transistor Koch (12) Alspector (6) Lazzaro (6) Murray (6)

140.0 (-2.43) spike ocular cells firing stimulus Sejnowski (22) Koch (18) Bower (11) Dayan (10)
2.48 (-3.66) data model learning algorithm training Jordan (17) Hinton (16) Williams (14) Tresp (13)
31.3 (-2.76) infomax image ica images kurtosis Hinton (12) Sejnowski (10) Amari (7) Zemel (7)
31.6 (-2.83) data training regression learning model Jordan (16) Tresp (13) Smola (11) Moody (10)
39.5 (-2.46) critic policy reinforcement agent controller Singh (15) Barto (10) Sutton (8) Sanger (7)
23.0 (-3.03) network training units hidden input Mozer (14) Lippmann (11) Giles (10) Bengio (9)

Table 3: Nine clusters discovered in NIPS abstracts data.

NIPS. We applied Greedy-Rate1 to all NIPS abstracts through NIPS12 (1740, total). The data was
preprocessed so that only words occuring in at least 100 abstracts were retained. The word counts
were then converted to binary. We performed one iteration of hyperparameter re-estimation. In
the supplemental material, we depict the top levels of the coalescent tree. Here, we use the tree to
generate a flat clustering. To do so, we use the log likelihood ratio at each branch in the coalescent
to determine if a split should occur. If the log likelihood ratio is greater than zero, we break the
branch; otherwise, we recurse down. On the NIPS abstracts, this leads to nine clusters, depicted
in Table 3. Note that clusters two and three are quite similar—had we used a slighly higher log
likelihood ratio, they would have been merged (the LLR for cluster 2 was only 0.105). Note that
the clustering is able to tease apart Bayesian learning (cluster 5) and non-bayesian learning (cluster
7)—both of which have Mike Jordan as their top author!

6 Discussion

We described a new model for Bayesian agglomerative clustering. We used Kingman’s coalescent
as our prior over trees, and derived efficient and easily implementable greedy and SMC inference
algorithms for the model. We showed empirically that our model gives better performance than other
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Hierarchical Modeling

• advantages of hierarchical modeling:

• captures both broad and specific trends

• facilitates transfer learning

• issues:

• the underlying tree may not be known

• predictions in deep hierarchies can be 
strongly influenced by the prior
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Learning the Tree

• major approaches for choosing a tree:

• agglomerative clustering

• Bayesian methods (place prior over trees)

• stochastic branching processes

• nested random partitions
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Agglomerative 
Clustering

• start with each datum in its own subtree

• iteratively merge subtrees based on a similarity metric

• issues:

• can’t add new data

• can’t form hierarchies over latent parameters

• difficult to incorporate structured domain 
knowledge
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Stochastic Branching 
Processes

• fully Bayesian model

• data starts at top and branches 
based on an arrival process 
(Dirichlet diffusion trees)

• can also start at bottom and 
merge (Kingman coalescents)

Consider the tree of N = 4 data points in Figure 1.
The probability of obtaining this tree structure and
associated divergence times is:

e−A(ta)
Γ(1−β)
Γ(2+α)

a(ta)Γ(1− β)

Γ(2 + α)

× e−A(ta)
Γ(2−β)
Γ(3+α)

1− β

2 + α
e−[A(ta)−A(tb)]

Γ(1−β)
Γ(2+α)

a(tb)Γ(1− β)

Γ(2 + α)

× e−A(ta)
Γ(3−β)
Γ(4+α)

α+ 2β

3 + α

The first data point does not contribute to the expres-
sion. The second point contributes the first line: the
first term results from not diverging between t = 0 and
ta, the second from diverging at ta. The third point
contributes the second line: the first term comes from
not diverging before time ta, the second from choosing
the branch leading towards the first point, the third
term comes from not diverging between times ta and
tb, and the final term from diverging at time tb. The
fourth and final data point contributes the final line:
the first term for not diverging before time ta and the
second term for diverging at branch point a.

The component resulting from the divergence and data
locations for the tree in Figure 1 is

N(x1; 0,σ
2)N(x2;xa,σ

2(1− ta))

×N(x3;xb,σ
2(1− tb))N(x4;xa,σ

2(1− ta))

where each data point has contributed a term. We can
rewrite this as:

N(xa; 0,σ
2ta)N(xb;xa,σ

2(tb − ta))

×N(x1;xb,σ
2(1− tb))×N(x2;xa,σ

2(1− ta))

×N(x3;xb,σ
2(1− tb))N(x4;xa,σ

2(1− ta)) (5)

to see that there is a Gaussian term associated with
each branch in the tree.

3 Theory

Now we present some important properties of the
PYDT generative process.

Lemma 1. The probability of generating a specific tree
structure, divergence times, divergence locations and
corresponding data set is invariant to the ordering of
data points.

Proof. The probability of a draw from the PYDT can
be decomposed into three components: the probabil-
ity of the underlying tree structure, the probability
of the divergence times given the tree structure, and
the probability of the divergence locations given the
divergence times. We will show that none of these

Figure 1: A sample from the Pitman-Yor Diffusion
Tree with N = 4 datapoints and a(t) = 1/(1− t),α =
1,β = 0. Top: the location of the Brownian motion
for each of the four paths. Bottom: the corresponding
tree structure. Each branch point corresponds to an
internal tree node.

components depend on the ordering of the data. Con-
sider the tree T as a set of edges S(T ) each of which
we will see contributes to the joint probability den-
sity. The tree structure T contains the counts of
how many datapoints traversed each edge. We de-
note an edge by [ab] ∈ S(T ), which goes from node
a to node b with corresponding locations xa and xb

and divergence times ta and tb. Let m(b) be the num-
ber of samples to have passed through b. Denote by
S �(T ) = {[ab] ∈ S(T ) : m(b) ≥ 2} the set of all edges
traversed by m ≥ 2 samples (for divergence functions
which ensure divergence before time 1 this is the set
of all edges not connecting to leaf nodes).

Probability of the tree structure. For segment [ab], let
i be the index of the sample which diverged to create
the branch point at b, thereby contributing a factor

a(tb)Γ(i− 1− β)

Γ(i+ α)
. (6)

Let the number of branches from b be Kb, and the
number of samples which followed each branch be
{nb

k : k ∈ [1 . . .Kb]}. The total number of datapoints

which traversed edge [ab] is m(b) =
�Kb

j=1 n
b
k. It can

be shown (see Appendix A) that the factor associated
with this branching structure for the data points after
i is

�Kb

k=3[α+ (k − 1)β]Γ(i+ α)
�Kb

l=1 Γ(n
b
l − β)

Γ(i− 1 + β)Γ(m(b) + α)
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Stochastic Branching 
Processes

• many nice properties

• infinitely exchangeable

• complexity of tree grows with the data

• latent parameters must undergo a 
continuous-time diffusion process

• unclear how to construct such a process 
for models over discrete data
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Random Partitions

• stick-breaking process: a way to partition 
the unit interval into countably many 
masses π1,π2,...

• draw βk from Beta(1,γ)

• let πk = βk x (1-β1) ... (1-βk-1)

• the distribution over the πk is called a 
Dirichlet process
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Random Partitions

• suppose {πk}k=1,...,∞ are drawn from a 
Dirichlet process

• for n=1,..,N, let Xn ~ Multinomial({πk})

• induces distribution over partitions of 
{1,...,N}

• given partition of {1,...,N}, add XN+1 to a part 
of size s with probability s/(N+γ) and to a 
new part with probability γ/(N+γ)

• Chinese restaurant process
Wednesday, November 9, 2011



Nested Random 
Partitions

• a tree is equivalent to a collection of 
nested partitions

• nested tree <=> nested random partitions

• partition at each node given by Chinese 
restaurant process

• issue: when to stop recursing?
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Martingale Property

• martingale property:
          
          E[f(θchild) | θparent] = f(θparent)

• implies E[f(θv) | θu] = f(θu) for any ancestor 
u of v

• says that learning about a child does not 
change beliefs in expectation
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Doob’s Theorem

• Let θ1, θ2,... be a sequence of random 
variables such that E[f(θn+1) | θn] = f(θn) 
and supn E[|θn|] < ∞.
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• Let θ1, θ2,... be a sequence of random 
variables such that E[f(θn+1) | θn] = f(θn) 
and supn E[|θn|] < ∞.

• Then limn!∞f(θn) exists with probability 1.
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Doob’s Theorem

• Let θ1, θ2,... be a sequence of random 
variables such that E[f(θn+1) | θn] = f(θn) 
and supn E[|θn|] < ∞.

• Then limn!∞f(θn) exists with probability 1.

• Intuition: each new random variable reveals 
more information about f(θ) until it is 
completely determined.
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Doob’s Theorem

• Use Doob’s theorem to build infinitely 
deep hierarchy

• data associated with infinite paths v1,v2,... 
down the tree

• each datum drawn from distribution 
parameterized by limn f(θvn)
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Doob’s Theorem

• all data have infinite depth

• can think of effective depth of a datum as 
first point where it is in a unique subtree

• effective depth is O(logN)
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Letting the Complexity 
Grow with the DataManuscript under review by AISTATS 2012

Figure 2: Trees drawn from the prior of the model with N = 100 data points. At the top is the tree generated
by tree-structured stick breaking, and at the bottom is the tree generated by the nCRP. In both cases we used a
hyper-parameter of γ = 1. For the stick breaking model, we further set α = 10 and λ = 1

2 (these are parameters
that do not exist in our model). Note that the tree generated by TSSB is very wide and shallow. A larger value
of α would fix this for N = 100, but increasing N would cause the problem to re-appear.
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Figure 3: Tree depth versus number of data points. We drew a single tree from the prior for the nCRP as well
as for tree-structured stick-breaking, and computed both the maximum and average depth as more data was
added to the tree. The above plots show that the depth of the nCRP increases with the amount of data, whereas
the depth of tree-structured stick-breaking (TSSB) quickly converges to a constant. The different curves for the
TSSB model correspond to different settings of the hyperparameters α and λ.
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TSSB model correspond to different settings of the hyperparameters α and λ.
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Hierarchical Beta 
Processes

• θv lies in [0,1]D

• θv,d | θp(v),d ~ Beta(cθp(v),d,c(1-θp(v),d))

• martingale property for f(θv) = θv
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Hierarchical Beta 
Processes

• θv lies in [0,1]D

• θv,d | θp(v),d ~ Beta(cθp(v),d,c(1-θp(v),d))

• martingale property for f(θv) = θv

• let θ denote the limit

• Xd | θd ~ Bernoulli(θd), where θ is the limit
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Hierarchical Beta 
Processes

• θv lies in [0,1]D

• θv,d | θp(v),d ~ Beta(cθp(v),d,c(1-θp(v),d))

• martingale property for f(θv) = θv

• let θ denote the limit

• Xd | θd ~ Bernoulli(θd), where θ is the limit

• note that Xd | θv,d ~ Bernoulli(θv,d) as well
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Hierarchical Beta 
ProcessesManuscript under review by AISTATS 2012

Figure 4: Part of a sample from the incremental Gibbs sampler for our model applied to a hierarchical beta
process. The latent parameters at internal nodes are represented by gray lines with white = 0, black = 1. The
nodes with thicker borders represent data. The complete tree is available in the supplementary material.

hierarchies due to general numerical issues with hier-
archical Beta processes. The numerical issues occur
when we are resampling the parameters of a node and
one of the values of the children is very close to 0 or 1.
If a child parameter is very close to 0, for instance, it
actually matters for the likelihood whether the param-
eter is equal to 10−10 or 10−50 (or even 10−1000). Since
we cannot actually distinguish between these numbers
with floating point arithmetic, this introduces innacu-
racies in the posterior that push all of the parameters
closer to 0.5. To deal with this problem, we assume
that we cannot distinguish between numbers that are
less than some distance � from 0 or 1. If we see such
a number, we treat it as having a censored value (so
it appears as P[θ < �] or P[θ > 1 − �] in the likeli-
hood). We then obtain a log-concave conditional den-
sity, for which efficient sampling algorithms exist (Ley-
dold, 2003).

Scalability If there are N data points, each with L

features, and the tree has depth D, then the time it
takes to add a data point is O(NL), the time it takes to
remove a data point is O(L+D), and the time it takes
to resample a single set of parameters is (amortized)
O(L). The dominating operation is adding a node, so
to make a Gibbs update for all data points will take
total time O(N2L).

Results To demonstrate inference in our model, we
created a data set of 53 stick figures determined by
the presence or absence of a set of 29 lines. We then
ran incremental Gibbs sampling for 100 iterations with
hyperparameters of γ = 1.0, c = 20.0. The output of
the final sample is given in Figure 4.

5 Conclusion

We have presented an exchangeable prior over discrete
hierarchies that can flexibly increase its depth to ac-
comodate new data. We have also implemented this
prior for a hierarchical beta process. Along the way,
we identified a common model property — the martin-
gale property — that has interesting and unexpected
consequences in deep hierarchies.

This paper has focused on a general theoretical charac-
terization of infinitely exchangeable distributions over
trees based on the Doob martingale convergence the-
orem, on elucidating properties of deep hierarchical
beta processes as an example of such models, and on
defining an efficient inference algorithm for such mod-
els, which was demonstrated on a small binary data
set. A full experimental evaluation of nonparametric
Bayesian models for hierarchices is outside the scope
of this paper but clearly of interest.
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Priors for Deep 
Hierarchies

• for HBP, θv,d converges to 0 or 1

• rate of convergence: tower of exponentials

• numerical issues + philosophically troubling

ee
ee

···
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Priors for Deep 
Hierarchies

• inverse Wishart time-series

• Σn+1 | Σn ~ InvW(Σn)

• converges to 0 with probability 1

• becomes singular to numerical precision

• rate also given by tower of exponentials
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Priors for Deep 
Hierarchies

• fundamental issues with iterated gamma 
distribution

• θn+1 | θn ~ Γ(θn)

• instead, do θn+1 | θn ~ cθn +dϕn

• ϕn ~ Γ(θn)

Wednesday, November 9, 2011



Priors for Deep 
Hierarchies
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Figure 1: Sampled values of the mass of an atom in a hierarchical Dirichlet process as a function

of depth. Top-left: a standard hierarchical Dirichlet process with κ = 10.0, � = 0.1. Note that

the mass spends a lot of time near zero. Top-right: our first proposed change to the hierarchical

Dirichlet process. Note that the mass now converges to a nonzero value. Bottom-left: the top-left

graph on a semilogarithmic scale, which demonstrates that the mass regularly drops to values below

10−7
. Bottom-right: a demonstration of what happens if we just use the model θc ∼ DP(κθv) (in

other words, if we set � to zero). We only show up to a depth of 8 because at higher depths the mass

is smaller than 10−308
and therefore rounded to 0 on a computer.

processes with a suitable parameterization of the Pitman-Yor process (Gasthaus and Teh, 2011),

such that the parameters converge to a single atom at a controlled rate. This parameterization has

the further advantage that it is the marginal distribution of a continuous-time stochastic process, and

can therefore be incorporated into the framework of Dirichlet diffusion trees (Neal, 2003; Knowles

and Ghahramani, 2011).
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