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Summary
•We present a new family of Bayesian hierarchical 
models based on the nested Chinese restaurant 
process, and show that every completely 
exchangeable hierarchical model can be 
represented as a member of this family

•We do this by giving a criterion (the martingale 
criterion) that allows substantial generalization of 
the nested Chinese restaurant process beyond topic 
models

•Using this criterion, we construct infinitely deep 
hierarchical Dirichlet and beta processes

•Our construction circumvents issues present in the 
tree-structured stick-breaking model

Motivation
•Priors over tree structures are crucial for 
performing Bayesian hierarchical modeling

•To date, all proposals for priors over discrete trees 
have undesirable properties

•Tree-structured stick-breaking has a constant 
depth under the prior
•Nested Chinese restaurant processes are hard to 
extend beyond topic models
•Dirichlet diffusion trees are designed for 
continuous, not discrete, data

•To flexibly learn the structure of models such as 
hierarchical Dirichlet and beta processes, we need 
something better

•Our solution: build machinery to extend the nCRP 
to these models

Review: The nCRP
•The nested Chinese restaurant process, or nCRP, is 
a prior for Bayesian hierarchical models

•Each datum is associated with a path down the 
tree, as shown below (each of the numbers 
indicates a datum)

      

•If X is a datum and its path has reached v, the 
probability that it continues to a child c of v is 
given by a Chinese restaurant process

•The distribution over X given its path depends only 
on the latent parameters along the path

Example: An Infinite 
Random Walk

•Suppose that each node v contains a real number xv 
and that for a child c of v, the distribution for xc 
given xv is N(xv,1)

•Then the marginal distribution for xv if v is at depth 
d is N(0,d)

•This diverges as d→∞:
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•Therefore, this model is not well-defined

Example: An Infinite 
Hierarchical Dirichlet Process

•Suppose that each node v contains a probability 
vector µv over 3 outcomes {a,b,c}, and that for a 
child c of v, the distribution for µc given µv is 
Dirichlet(µv(a),µv(b),µv(c))

•Then we can show that µv(x) converges to either 0 
or 1 for each x
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•Therefore, µv converges as the depth approaches ∞

•So, this defines a valid infinitely deep hierarchical 
Dirichlet process

The Martingale Criterion

•Both for the random walk and the hierarchical 
Dirichlet process, we have E[θc | θv] = θv, where θv 
is the collection of parameters at node v

•This condition is called the martingale criterion
•In general, ask that E[f(θc) | θv] = f(θv) for some f

•Theorem (Doob): All non-negative martingale 
sequences have a limit with probability 1.

•Corollary: The infinite HDP converges. 
Furthermore, since the limiting variance for µc 
given µv must be 0, all the mass of µv concentrates 
on a single atom as the depth approaches ∞.

•Remark: The infinite random walk is not non-
negative, which is why Doob’s theorem does not 
apply.

•Examples of martingales:
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Ex. 1: Parameters of a hierarchical Beta process.
θd+1 | θd ~ Beta(50θd,50(1-θd))
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Ex. 2: A martingale given by θd=αd/(αd+βd), where 
αd+1 | αd ~ αd+Gamma(αd,1),
βd+1 | βd ~ βd+Gamma(βd,1).

General Construction

•Take any desired prior over infinite trees (such as 
the nCRP), and let θv denote the latent parameter at 
node v

•Let θc | θv ~ G(θv) such that E[f(θc) | θv] = f(θv) for 
some non-negative function f

•For a datum X associated with a path v1,v2,..., 
define φ(X) as 

•By Doob’s theorem, φ(X) exists

•Sample X from some distribution H(φ(X))

•Example: infinite HDP
•θv is the probability distribution at node v
•G(θ) = Dirichlet(θ)
•f(θ) = θ
•H(φ) = Multinomial(φ)

Universality
•A hierarchical model is completely exchangeable 
if, for a node c with parent v, the distribution for θc 
depends only on θv and the depth of c in the tree

•Theorem: for any completely exchangeable 
hierarchical model, there exists an alternate set of 
latent parameters τv ∈ T of at most countable 
dimension, and a function f : T → [0,1]∞ such that  
E[f(τc) | τv] = f(τv)

•Therefore, every completely exchangeable model 
can be realized using our construction

•But the reparameterization in terms of τ might 
be inconvenient computationally

Comparison to Tree-
Structured Stick Breaking

•The main alternative proposal for Bayesian 
hierarchies is tree-structured stick-breaking

•To demonstrate the desirability of our construction, 
we perform an empirical comparison of the nCRP 
and TSSB

•A theoretical analysis is given in the paper

•Comparison 1: depth of the tree as a function of 
data size
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Figure 2: Trees drawn from the prior of the nCRP (top) and TSSB (bottom) models with N = 100 data points.
In both cases we used a hyper-parameter of γ = 1. For TSSB, we further set α = 10 and λ = 1

2 (these are
parameters that do not exist in the nCRP). Note that the tree generated by TSSB is very wide and shallow. A
larger value of α would fix this for N = 100, but increasing N would cause the problem to re-appear.
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Figure 3: Tree depth versus number of data points. We drew a single tree from the prior for the nCRP as well as
for tree-structured stick-breaking, and computed both the maximum and average depth as more data was added
to the tree. The above plots show that the depth of the nCRP increases with the amount of data, whereas the
depth of TSSB quickly converges to a constant. The different curves for the TSSB model correspond to different
settings of the hyperparameters α and λ.

 Note that the depth of the nCRP grows with the 
 data, but the depth of TSSB does not.

•Comparison 2: samples from the prior for 
|Data|=100
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Figure 3: Tree depth versus number of data points. We drew a single tree from the prior for the nCRP as well as
for tree-structured stick-breaking, and computed both the maximum and average depth as more data was added
to the tree. The above plots show that the depth of the nCRP increases with the amount of data, whereas the
depth of TSSB quickly converges to a constant. The different curves for the TSSB model correspond to different
settings of the hyperparameters α and λ.

 Top: nCRP, bottom: TSSB; note that TSSB is 
 very wide and shallow.

θv,d+1 | θv,d ∼ G(θv,d)
E[f(θv,d+1) | θv,d] = f(θv,d)

φ(X) = lim
d→∞

f(θv,d)

X ∼ H(φ(X))

φ(X) = lim
d→∞

f(θvd)

Tractability of Inference
•To perform inference, we need to compute the 
posterior over φ(X) given just some prefix 
v1,v2,...,vd of the path for X

        

•If X ~ H(φ(X)), just need sufficient statistics for H

•For discrete models (e.g. H(φ) = Multinomial(φ)), 
E[φ] is a sufficient statistic

•Then the computation is easy: by the martingale 
condition, E[f(θc) | θv] = f(θv), so E[φ | θv] = f(θv)

To perform efficient inference,
we need to sample φ(X) | θv,4.


