# Flexible Martingale Priors for Deep Hierarchies

Jacob Steinhardt and Zoubin Ghahramani

| Summary                                                                                                                                                                  | Motivation                                                                                                                                                                                                                              | Review: The nCRP                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| •We present a new family of Bayesian hierarchical models based on the nested Chinese restaurant                                                                          | •Priors over tree structures are crucial for performing Bayesian hierarchical modeling                                                                                                                                                  | •The nested Chinese restaurant process, or nCRP, is a prior for Bayesian hierarchical models                |
| process, and show that every completely<br>exchangeable hierarchical model can be<br>represented as a member of this family                                              | •To date, all proposals for priors over discrete trees<br>have undesirable properties                                                                                                                                                   | •Each datum is associated with a path down the tree, as shown below (each of the numbers indicates a datum) |
| •We do this by giving a criterion (the <i>martingale criterion</i> ) that allows substantial generalization of the nested Chinese restaurant process beyond topic models | <ul> <li>Tree-structured stick-breaking has a constant<br/>depth under the prior</li> <li>Nested Chinese restaurant processes are hard to<br/>extend beyond topic models</li> <li>Dirichlet diffusion trees are designed for</li> </ul> |                                                                                                             |
| •Using this criterion, we construct infinitely deep hierarchical Dirichlet and beta processes                                                                            | <ul> <li>continuous, not discrete, data</li> <li>To flexibly learn the structure of models such as<br/>hierarchical Dirichlet and beta processes, we need<br/>something better</li> </ul>                                               |                                                                                                             |
| •Our construction circumvents issues present in the tree-structured stick-breaking model                                                                                 | •Our solution: build machinery to extend the nCRP                                                                                                                                                                                       | •If X is a datum and its path has reached v, the probability that it continues to a child c of v is         |

•Our solution: build machinery to extend the nCRP

to these models

•The distribution over X given its path depends only on the latent parameters along the path

given by a Chinese restaurant process

## Example: An Infinite Random Walk

•Suppose that each node v contains a real number  $x_v$ and that for a child c of v, the distribution for x<sub>c</sub> given  $x_v$  is  $N(x_v, 1)$ 



#### •Then the marginal distribution for $x_v$ if v is at depth d is N(0,d)

# Example: An Infinite Hierarchical Dirichlet Process

•Suppose that each node v contains a probability vector  $\mu_v$  over 3 outcomes {a,b,c}, and that for a child c of v, the distribution for  $\mu_c$  given  $\mu_v$  is Dirichlet( $\mu_v(a), \mu_v(b), \mu_v(c)$ )



#### •Then we can show that $\mu_v(x)$ converges to either 0 or 1 for each x

# The Martingale Criterion

•Both for the random walk and the hierarchical Dirichlet process, we have  $E[\theta_c | \theta_v] = \theta_v$ , where  $\theta_v$ is the collection of parameters at node v

•This condition is called the *martingale criterion* •In general, ask that  $E[f(\theta_c) | \theta_v] = f(\theta_v)$  for some f

•Theorem (Doob): All non-negative martingale sequences have a limit with probability 1.

•Corollary: The infinite HDP converges. Furthermore, since the limiting variance for  $\mu_c$ given  $\mu_v$  must be 0, all the mass of  $\mu_v$  concentrates on a single atom as the depth approaches  $\infty$ .

•**Remark:** The infinite random walk is not nonnegative, which is why Doob's theorem does not apply.

•Examples of martingales:







- •Therefore,  $\mu_v$  converges as the depth approaches  $\infty$
- •So, this defines a valid infinitely deep hierarchical Dirichlet process

Ex. 1: Parameters of a hierarchical Beta process.  $\theta_{d+1} \mid \theta_d \sim \text{Beta}(50\theta_d, 50(1-\theta_d))$ 



Ex. 2: A martingale given by  $\theta_d = \alpha_d / (\alpha_d + \beta_d)$ , where  $\alpha_{d+1} \mid \alpha_d \sim \alpha_d + \text{Gamma}(\alpha_d, 1),$  $\beta_{d+1} \mid \beta_d \sim \beta_d + \text{Gamma}(\beta_d, 1).$ 

#### General Construction

•Take any desired prior over infinite trees (such as the nCRP), and let  $\theta_v$  denote the latent parameter at node v

•Let  $\theta_c \mid \theta_v \sim G(\theta_v)$  such that  $E[f(\theta_c) \mid \theta_v] = f(\theta_v)$  for some non-negative function f

•For a datum X associated with a path  $v_1, v_2, ...,$ define  $\varphi(X)$  as  $\phi(X) = \lim_{d \to \infty} f(\theta_{v_d})$ •By Doob's theorem,  $\varphi(X)$  exists

### Universality

•A hierarchical model is *completely exchangeable* if, for a node c with parent v, the distribution for  $\theta_c$ depends only on  $\theta_v$  and the depth of c in the tree

•Theorem: for any completely exchangeable hierarchical model, there exists an alternate set of latent parameters  $\tau_v \in T$  of at most countable dimension, and a function  $f: T \rightarrow [0,1]^{\infty}$  such that  $E[f(\tau_c) \mid \tau_v] = f(\tau_v)$ 

•Therefore, every completely exchangeable model can be realized using our construction •But the reparameterization in terms of  $\tau$  might be inconvenient computationally

## Comparison to Tree-Structured Stick Breaking

•The main alternative proposal for Bayesian hierarchies is tree-structured stick-breaking

- •To demonstrate the desirability of our construction, we perform an empirical comparison of the nCRP and TSSB
  - •A theoretical analysis is given in the paper
- •Comparison 1: depth of the tree as a function of

•Sample X from some distribution  $H(\varphi(X))$ 



• $H(\phi) = Multinomial(\phi)$ 

# Tractability of Inference

•To perform inference, we need to compute the posterior over  $\varphi(X)$  given just some prefix v<sub>1</sub>,v<sub>2</sub>,...,v<sub>d</sub> of the path for X



To perform efficient inference, we need to sample  $\phi(X) \mid \theta_{v,4}$ .

•If X ~ H( $\phi(X)$ ), just need sufficient statistics for H

•For discrete models (e.g.  $H(\phi) = Multinomial(\phi))$ ,  $E[\phi]$  is a sufficient statistic

•Then the computation is easy: by the martingale condition,  $E[f(\theta_c) | \theta_v] = f(\theta_v)$ , so  $E[\phi | \theta_v] = f(\theta_v)$  data size



Note that the depth of the nCRP grows with the data, but the depth of TSSB does not.

•Comparison 2: samples from the prior for |Data|=100



Top: nCRP, bottom: TSSB; note that TSSB is very wide and shallow.

