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Summary

*We present a new family of Bayesian hierarchical
models based on the nested Chinese restaurant
process, and show that every completely
exchangeable hierarchical model can be
represented as a member of this family

*We do this by giving a criterion (the martingale
criterion) that allows substantial generalization of
the nested Chinese restaurant process beyond topic
models

*Using this criterion, we construct infinitely deep
hierarchical Dirichlet and beta processes

Our construction circumvents 1ssues present in the
tree-structured stick-breaking model

Motivation

*Priors over tree structures are crucial for
performing Bayesian hierarchical modeling

*To date, all proposals for priors over discrete trees
have undesirable properties
*Tree-structured stick-breaking has a constant
depth under the prior
*Nested Chinese restaurant processes are hard to
extend beyond topic models
Dirichlet diffusion trees are designed for
continuous, not discrete, data

*To flexibly learn the structure of models such as
hierarchical Dirichlet and beta processes, we need
something better

*Our solution: build machinery to extend the nCRP
to these models

Review: The nCRP

*The nested Chinese restaurant process, or nCRP, 1s
a prior for Bayesian hierarchical models

*Each datum 1s associated with a path down the
tree, as shown below (each of the numbers
indicates a datum)
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]f X 1s a datum and 1ts path has reached v, the
probability that 1t continues to a child ¢ of v 1s
given by a Chinese restaurant process

*The distribution over X given its path depends only
on the latent parameters along the path

Example: An Infinite
Random Walk

*Suppose that each node v contains a real number x,
and that for a child c of v, the distribution for x.
given Xy 1S N(Xy,1)
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*Then the marginal distribution for xy 1f v 1s at depth
d 1s N(0,d)

*This diverges as d—o0:

*Therefore, this model 1s not well-defined

Example: An Infinite

Hierarchical Dirichlet Process

*Suppose that each node v contains a probability
vector uy over 3 outcomes {a,b,c}, and that for a
child ¢ of v, the distribution for pc given py 1s
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*Then we can show that uy(x) converges to either O
or 1 for each x

5
depth(v)

*Therefore, uy converges as the depth approaches oo

So, this defines a valid infinitely deep hierarchical
Dirichlet process

The Martingale Criterion

*Both for the random walk and the hierarchical
Dirichlet process, we have E[0O. | 0v] = Oy, where 0y
1s the collection of parameters at node v

*This condition 1s called the martingale criterion
In general, ask that E[{(0.) | Ov] = 1(0v) for some {

*Theorem (Doob): All non-negative martingale
sequences have a limit with probability 1.

eCorollary: The infinite HDP converges.
Furthermore, since the limiting variance for pc
given Uy must be 0, all the mass of puy concentrates
on a single atom as the depth approaches .

eRemark: The infinite random walk 1s not non-
negative, which 1s why Doob’s theorem does not

apply.

eExamples of martingales:

Ex. 1. Parameters of a hierarchical Beta process.
Od+1 | 0a~ Beta(5004,50(1-04))

Ex. 2: A martingale given by 04=0.4/(0.a+Pd), where
Od+1 | od ~ agtGamma(ag, 1),

Ba+1 | Pd ~ PatGamma(Pq,1).

General Construction

*Take any desired prior over infinite trees (such as
the nCRP), and let 0y denote the latent parameter at
node v

Let O | Oy~ G(By) such that E[f(0.) | 6v] = {(0y) for
some non-negative function f

For a datum X associated with a path vi,vo,...,
define @(X) as ¢(X) = lim f(6,,)

d—

By Doob’s theorem, ZE(X) exi1sts

Sample X from some distribution H(¢p(X))

91},d—|—1 | Hv,d ~ G(‘gv,d)
E[f(0v,d+1) | Ov,a] = f(0v,q)

O(X) = lim f(0y,q)

d— 00

X ~ H(p(X))

eExample: infinite HDP
0y 1s the probability distribution at node v
*G(0) = Dirichlet(0)
f(0) =0
*H(¢p) = Multinomial(o)

Universality

A hierarchical model 1s completely exchangeable
if, for a node ¢ with parent v, the distribution for 0.
depends only on 0y and the depth of ¢ 1n the tree

Theorem: for any completely exchangeable
hierarchical model, there exists an alternate set of
latent parameters tv € T of at most countable

dimension, and a function f : T — [0,1]* such that
E[f(te) | Tv] = f(1v)

*Therefore, every completely exchangeable model
can be realized using our construction
*But the reparameterization 1n terms of T might
be inconvenient computationally

Tractability of Inference

*To perform inference, we need to compute the
posterior over @(X) given just some prefix
V1,V2,...,vd of the path for X

To perform efficient inference,
we need to sample ¢(X) | 0, 4.

If X ~ H(¢p(X)), just need sufficient statistics for H

For discrete models (e.g. H(¢) = Multinomial(o)),
E[o] 1s a sufficient statistic

*Then the computation 1s easy: by the martingale
condition, E[f(0.) | 6v] = {(6v), so E[¢ | 0] = {(0)

Comparison to Tree-
Structured Stick Breaking

*The main alternative proposal for Bayesian
hierarchies 1s tree-structured stick-breaking

*To demonstrate the desirability of our construction,
we perform an empirical comparison of the nCRP

and TSSB
*A theoretical analysis 1s given in the paper

«Comparison 1: depth of the tree as a function of
data size

average depth
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Note that the depth of the nCRP grows with the
data, but the depth of TSSB does not.

«Comparison 2: samples from the prior for
|Dataj=100
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Top: nCRP, bottom: TSSB; note that TSSB 1s
very wide and shallow.




