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Abstract

We present an infinitely exchangeable prior
over discrete tree structures that allows the
depth of the tree to grow with the data.
We show that the depth of the tree un-
der the prior increases with the amount of
data, which distinguishes it from any exist-
ing model; we then implement the model for a
hierarchical beta process. We also show that
deep hierarchical models are in general inti-
mately tied to a process called a martingale,
and use Doob’s martingale convergence the-
orem to demonstrate some unexpected prop-
erties of deep hierarchies.

1 Introduction

One of the most fundamental questions we face in ma-
chine learning is what structure we should use to inter-
pret our data. Hierarchical modeling provides one an-
swer to this question — by modeling data at multiple
layers of abstraction, we can capture broad trends over
the entire data set while also taking advantage of more
specific patterns that only occur over small portions of
the data. A hierarchical structure over a data set can
thus provide a very powerful way of sharing statistical
strength over different parts of the data. However, in
most cases the hierarchical structure is not known in
advance and must instead be learned. There are many
heuristics for finding such structure, typically by it-
eratively merging together subtrees that are similar
under some suitable metric (Duda et al., 2000; Heller
and Ghahramani, 2005; Blundell et al., 2010). From
a statistical perspective, these approaches are trouble-
some — there is no principled or consistent way to add
new data to the tree, and it is unclear how to compare
two different trees over the same data set if they have
different numbers of internal nodes. Such heuristics
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also limit the potential scope of the model — for in-
stance, it is not clear how to deal with hierarchies over
latent parameters or with missing data. It is also un-
clear how to reconcile an ad hoc clustering algorithm
with the eventual statistical model to be placed on the
data.

The Bayesian solution to these problems is to spec-
ify a probability distribution over tree structures. In
this way a hierarchical model has two components — a
prior over the possible tree structures, including where
the data lie in the tree, and a likelihood that specifies
a distribution over latent parameters, and how those
parameters affect the data. The task then is to find
a suitable prior for trees. There are four general pro-
posals for such a prior — Kingman coalescents (King-
man, 1982; Pitman, 1999; Teh et al., 2007), Dirichlet
diffusion trees (Neal, 2003; Knowles and Ghahramani,
2011), tree-structured stick breaking (Adams et al.,
2010), and nested Chinese restaurant processes (Blei
et al., 2010).

Kingman coalescents and Dirichlet diffusion trees are
both inherently continuous models, with paths either
splitting or merging according to some arrival pro-
cess, and the data corresponding to the final state of
a diffusion process. In addition to being infinitely ex-
changeable, these models have the nice property that
the complexity of the implied tree structure can grow
to accomodate increasing amounts of data. Unfortu-
nately, to use these models, one needs a time-indexed
stochastic process (such as a Wiener process) to under-
lie the data. There is thus a distinction between dis-
crete tree structures, where any likelihood may under-
lie the data, and continuous structures such as Dirich-
let diffusion trees, where the likelihood must corre-
spond to some continuous process. In some important
cases, such as a hierarchical beta process (Thibaux
and Jordan, 2007), no underlying continuous process
is known to exist.

It is therefore important to also consider inherently
discrete distributions over trees. This is the approach
of tree-structured stick breaking (TSSB) as well as
nested Chinese restaurant processes (nCRP). In both
of these cases, the tree is fixed to be countably deep,
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with every node having countably many children. The
interesting structure then emerges in the locations of
the data.

In TSSB a stick-breaking procedure is used to assign
a probability distribution over nodes: the root node
is given a constant portion of the probability mass
(drawn from a beta distribution), and the rest of the
mass is partitioned among subtrees of the root using a
Dirichlet process (Teh et al., 2004). The mass in each
subtree is then recursively divided in the same way. Fi-
nally, data are distributed throughout the tree accord-
ing to the resulting probability distribution. While
this model is infinitely exchangeable, the depth of the
tree is fixed by the prior — all data occur with high
probability at some finite collection of depths that does
not increase with the size of the data. This constitutes
an important way in which the complexity of the tree
is unable to grow to accomodate the data.

Kingman coalescents, Dirichlet diffusion trees, and
TSSB all separate out the prior over trees from the
likelihood for the latent parameters and the data. The
nCRP departs from this pattern. It associates each
data point with a path down the tree; there is then
an implicit tree structure based on where the different
paths branch. Because the paths are infinitely long,
care must be taken in choosing the likelihood to make
sure that the model is well-defined. In (Blei et al.,
2010), the likelihood is obtained by using a Dirich-
let process (DP) to form a mixture over distributions
given at each of the nodes in the path. This likelihood
has the important property that the mass that the DP
places on a tail of the path decays to zero; otherwise,
the resulting mixture distribution would not be well-
defined.

The nCRP makes the elegant decision to associate
data with paths rather than nodes. By doing so, the
depth of the CRP can grow to accomodate new data.
The nCRP is therefore the only prior over trees that is
fully Bayesian, infinitely exchangeable, grows to acco-
modate new data, and can handle inherently discrete
processes. However, these properties come at a cost.
Because of the convergence issues arising from the infi-
nite paths, it is unclear how to construct a conditional
distribution for a data point given its path, except by
a model similar to (Blei et al., 2010), which in many
cases does not accurately represent prior beliefs about
the data.

The main contribution of this paper is to give a general
approach for constructing likelihoods for the nCRP,
or any similar path-based model. Our construction
is universal for all path-based models (Theorem 2.3),
and works by taking limits of latent parameters along
paths down the tree, and using Doob’s martingale con-

vergence theorem to show that the limits exist with
probability 1. We use this fact to construct a fully
Bayesian hierarchical prior for both Dirichlet processes
(Teh et al., 2004) and beta processes (Thibaux and
Jordan, 2007). To show that inference is tractable in
our model, we implement it for a hierarchical beta pro-
cess (HBP).

It turns out that many existing hierarchical models al-
ready mimic our construction, except with finite rather
than infinite trees. A second contribution of our pa-
per is to use Doob’s theorem to analyze the proper-
ties of these models for deep hierarchies. This anal-
ysis yields some surprising results about hierarchical
models with an underlying gamma distribution, which
includes both HBPs and HDPs (hierarchical Dirichlet
processes).

The rest of the paper is organized as follows. In Sec-
tion 2, we describe our construction, introduce Doob’s
theorem, and use it to analyze several examples of deep
hierarchies, as well as to show that our proposed con-
struction is both well-defined and universal. In Sec-
tion 3, we derive the exact asymptotics of the depth
of an nCRP as a function of the data size. Finally, in
Section 4, we apply our model to a hierarchical beta
process and use it to perform hierarchical clustering
on a simple data set.

2 Model Description and Properties

In this section, we will present a general construction
for hierarchical models that associate data with paths
in the tree. For concreteness, we will use the nCRP as
the prior over tree structures. We start with an infor-
mal description of the elements of our model, then for-
mally state our model and show that it is well-defined.
First, though, we need a bit of notation. Given a tree
T and a vertex v ∈ T , let p(v) denote the parent of v
and A(v) denote the ancestors of v. Also, let Root(T )
denote the root of T , Subtree(v) denote the subtree
of T rooted at v, and Depth(v) denote the depth of v
(with Depth(Root(T )) = 0).

2.1 Model Overview

We imagine that an infinite tree T underlies our data.
Eventually, each datum will be associated with an in-
finite path down the tree, and be defined in terms of
a limiting process of the latent parameters. We ig-
nore this aspect of the model for now, and merely
assume that at each node v in the tree there is an
associated latent parameter θv. Moreover, in order to
even say that the tree underlies the data, we should
assume that θv depends only on its ancestors A(v);
more formally, we assume that p ({θv}v∈T ) factors as
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∏
v∈T p(θv | θA(v)). Note that p does not depend on

v; this reflects the philosophy that the latent param-
eters, and not just the data itself, should satisfy an
exchangeability property. We call models with this
stronger property completely exchangeable.

By replacing θv with θv∪A(v) (i.e. by concatenating all
the parameters on the path from Root(T ) to v), we
can always obtain a model where θv depends only on
its parent. In other words, the density can be assumed
to factor as

p ({θv}v∈T ) =
∏
v∈T

p(θv | θp(v)). (1)

We will therefore focus on this class of models for the
remainder of the discussion, keeping in mind that we
lose no generality in doing so.

It is often the case in models of the form given in (1)
that some key quantity f(θv) is preserved in expecta-
tion as we walk down the tree – more formally,

E[f(θv) | θp(v)] = f(θp(v)). (2)

For instance, in a hierarchical Dirichlet process, θv is a
probability distribution over the space of possible data,
and θv | θp(v) ∼ DP(cθp(v)) for some concentration
parameter c, where DP (µ) is a Dirichlet process with
base measure µ. In this case, E[θv | θp(v)] = θp(v); that
is, we can take f(θ) = θ.

If f satisfies (2), then f is said to be a martingale.
The martingale property will be of importance in the
sequel. It turns out that data living infinitely deep in
the tree will have a well-defined distribution if they
depend on a countable collection of L1-bounded mar-
tingales.

2.2 Formal Description

We now formally define our model. We have a tree
T of countable depth, such that every node v has a
countable collection of children C(v). For each v ∈ T
we have parameters θv (a latent parameter governing
data in that subtree) and πv (a probability distribution
over C(v)). For each datum X, we have an associated
path {vn(X)}∞n=0 such that v0(X) = Root(T ) and the
parent of vn+1(X) is vn(X). We also have a condi-
tional distribution G(θ) representing p(θv | θp(v)) and
a conditional distribution H(θ) representing p(X | θ)
(this is elaborated on below). Finally, we have a single
hyperparameter γ that roughly controls the branching
factor of the tree.

The generative process for our model is as follows:

For each v:

1. πv ∼ DP(C(v), γ)

2. θv | θp(v) ∼ G(θp(v))

For each X:

1. v0(X) = Root(T )

2. vn+1(X) | vn(X), πvn(X) ∼ Multinomial(πvn(X))

3. X | {vn(X)}∞n=0 ∼ H
(

lim
n→∞

f(θvn(X))
)

Thus a datum X is obtained by first sampling a path
down the tree T (using the distributions {πv}v∈T to
choose which edge to follow at each point), then tak-
ing a limit of latent parameters along that path, and
finally sampling X from a distribution indexed by that
limit. (The skeptical reader may wonder whether the
limit in the last step exists. This is established later,
in Theorem 2.2.)

In the sequel, we will omit the dependence of vn on X
when it is clear from context. We will also sometimes
refer to θn and πn instead of θvn and πvn . Finally,
we will abuse notation and say that X ∈ Subtree(v) if
vn(X) = v for some n.

2.3 Doob’s Theorem

The potential problem with the procedure specified
above is that lim

n→∞
f
(
θvn(X)

)
need not exist. This issue

is alleviated by the following theorem (Lamb, 1973):

Theorem 2.1 (Doob’s martingale convergence the-
orem). Let {θn}∞n=0 be a Markov chain over a space
Θ and let f : Θ → R. Suppose that E[f(θn+1) |
θn] = f(θn) for each n. Furthermore, suppose that
supn E[|f(θn)|] < ∞. Then lim

n→∞
f(θn) exists with

probability 1.

Before exploring the consequences of Theorem 2.1 for
the model proposed in Section 2.2, we go over some
examples of Doob’s theorem applied to sequences of
random variables.

Example 1: Suppose that θ0 ∼ Beta(1, 1) and that
θn+1 | θn ∼ Beta(cθn, c(1 − θn)) for n ≥ 0. If
f(θ) = θ, then E[f(θn+1) | θn] = E[θn+1 | θn] =
E[Beta(cθn, c(1 − θn))] = θn.1 Furthermore, 0 ≤
θn ≤ 1, so supn E[|f(θn)|] ≤ 1 < ∞. Consequently,
limn→∞ θn exists with probability 1.

In fact, the variance of Beta(cθ, c(1 − θ)) is θ(1−θ)
c+1 .

Since this variance must converge to 0 in the limit (as

1We abuse notation here, using E[Beta(α, β)] to refer to
the expectation of a random variable who distribution is
Beta(α, β). We will continue to use such notation through-
out the paper.



Manuscript under review by AISTATS 2012

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1: Examples of Doob’s martingale convergence theorem in action. Left: sequences of beta random
variables from Example 1, with c = 50. Center: sequences of gamma random variables from Example 2, with
λ = 50. Right: α

α+β from Example 3.

otherwise limn θn would not exist), we can conclude
that limn→∞ θn ∈ {0, 1} with probability 1. Figure 1
illustrates this behavior.

Example 2: Suppose that c0 ∼ Gamma(1, λ) and
that cn+1 | cn ∼ Gamma(cn, 1). Then E[cn+1 |
cn] = cn. Since cn+1 ≥ 0, we also have E[|cn+1| |
cn] = cn. Consequently, supn E[|cn|] = supn E[c0] =
λ < ∞. Thus limn→∞ cn exists with probability
1. Since the variance of Gamma(cn, 1) is cn, we see
that limn→∞ cn = 0 with probability 1. Note that
this means that the process of iteratively sampling a
gamma-distributed random variable with the mean of
the previous one will always converge to 0 in the limit,
which has interesting consequences for sequences of
random variables based on a gamma variate; these in-
clude HBPs, hierarchical Dirichlet processes, and hier-
archical gamma processes (Thibaux, 2008) as existing
examples; one could also imagine an inverse-Wishart
time series. The behavior of the sequence cn is also
illustrated in Figure 1.

Example 3: We now give an example of a mar-
tingale where f is not the identity function. Let
α0 ∼ Gamma(1, 1), β0 ∼ Gamma(1, 1), dn | αn ∼
Gamma(αn, 1), en | βn ∼ Gamma(βn, 1), and αn+1 =
αn + dn, βn+1 = βn + en. Note that the sequences
αn and βn are certainly not martingales. Indeed,
since E[αn+1 | αn] = αn + E[Gamma(αn, 1)] = 2αn,
and similarly for βn+1, the sequences αn and βn
both increase exponentially in expectation. However,
if we let f(αn, βn) = αn

αn+βn
, then (see Appendix

B) E[f(αn+1, βn+1) | αn, βn] = αn

αn+βn
. Therefore,

lim
n→∞

αn

αn+βn
exists with probability 1. This is again

illustrated in Figure 1.

Example 4: Doob’s theorem provides guarantees
on the convergence of real-valued sequences satisfy-
ing the martingale condition. But there are many
cases when we care about more than just a single real
number. For instance, in a hierarchical Dirichlet pro-

cess, we might care about a sequence {µn}∞n=0 where
µn+1 | µn ∼ DP(µn). Fortunately, we can still use
Doob’s theorem; since the output of a Dirichlet pro-
cess consists of countably many atoms, we only need
to worry about µn({p}) for the countably many points
p that are atoms of µ1. Since E[µn+1 | µn] = µn,
we also have E[µn+1({p}) | µn] = µn({p}), hence
lim
n→∞

µn({p}) exists almost surely for each p. Since

there are only countably many such p, we then have
that lim

n→∞
µn({p}) exists for all p almost surely. Also,

by logic similar to example 1, each µn({p}) must con-
verge to either 0 or 1, implying that the measure µn
converges to a single atom in the infinite limit.2

Example 5: We finally go over an example of a
martingale that does not converge. Let x0 = 0 and
let xn+1 | xn ∼ N (xn, 1). In other words, xn+1 is
equal to xn perturbed by Gaussian noise with vari-
ance 1. Then E[xn+1 | xn] = xn, so the sequence
{xn}∞n=0 is a martingale. However, E[|xn|] = Θ(

√
n),

so supn E[|xn|] = ∞. As a result, Theorem 2.1 does
not apply, and indeed, the sequence {xn} clearly does
not have a limit.

2.4 Constraints on the Likelihood

We hinted in Section 2.3 that Doob’s theorem would
give us conditions under which the process in Sec-
tion 2.2 leads to a well-defined generative distribution.
We now formalize this.

Theorem 2.2. Let θn+1 | θn ∼ G(θn), and sup-
pose that E[f(θn+1) | θn] = f(θn). Further suppose

2This actually requires a bit more of an argument than
before, as the µn could converge in distribution but not
almost surely; for instance we could have µn = δpn for
a countable sequence of distinct points pn, in which case
limn→∞ µn({p}) would be identically zero for all p, but
limn→∞ µn would not converge almost surely to any prob-
ability distribution. However, we will ignore these issues
for this example.
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that f is an at most countable collection {fk}∞k=1 of
sufficient statistics for H, and that each fk satisfies
supn E[|fk(θn)|] < ∞. Then lim

n→∞
f(θn) exists with

probability 1.

Proof. By Doob’s theorem, limn→∞ fk(θn) exists al-
most surely for each k individually. Since there
are only countably many fk, and the intersection of
a countable collection of almost-sure events is still
almost-sure, the theorem follows.

We thus end up with two constraints on the likelihood
that we need in order to use our model — the mar-
tingale condition, and the boundedness of E[|fk(θ)|].
Intuitively, we can think of a martingale sequence as
revealing gradually more information about a random
variable until it is completely determined. From this
perspective, the parameter θv captures information
that is true across all of Subtree(v), with the param-
eters at descendants containing more precise informa-
tion about their specific subtrees. However, Example
5 shows that this intuition is not perfect, which is why
we need the boundedness condition as well.

We next give a converse to Theorem 2.2, proved in
Appendix A, showing that the martingale and bound-
edness conditions are both necessary:

Theorem 2.3. Consider any completely exchange-
able model that associates a datum X with a path
{vn(X)}∞n=0 down a tree T , and that draws X from
some distribution p(X | {vn(X)}∞n=0). Let θv be the de
Finetti mixing distribution for p(X | X ∈ Subtree(v)).
Then E[θv | θp(v)] = θv, and supn E[|[θn(X)](S)|] <∞
for all measurable sets S. If X lies in a Polish space3,
then θ is determined by the value of {θ(S)}S∈C for a
countable collection of sets C, and X | {vn(X)}∞n=0 ∼
lim
n→∞

θn, where the limit is in the topology of weak con-
vergence.

Finally, we note that the conditions of Theorem 2.2
hold for any countable-dimensional martingale that is
bounded either above or below (see Example 2 of Sec-
tion 2.3). In particular, letting f(θ) = θ, they hold for
hierarchical Dirichlet processes (G(θ) = DP(cθ)), hier-
archical beta processes (G(θ) = BP(θ, c)), and hierar-
chical gamma processes (G(θ) = GammaP(θ)), since
these are all non-negative and depend on only a count-
able collection of atoms.

3 Depth of an nCRP

The key property of an nCRP that makes it desir-
able over tree-structured stick breaking is the depth of

3A Polish space is a completely metrizable separable
space. All spaces of interest in statistics are Polish.

the resulting tree. Note that in an nCRP, every data
point is associated with an infinite path, and thus lies
infinitely deep in the tree. However, we can talk about
the effective depth of a data point as the smallest depth
at which that point is the unique datum in its subtree.

Proposition 3.1. The effective depth of a data point

is ΘN

(
log(N)

ξ+ψ(1+γ)

)
with high probability, where ξ is

the Euler-Mascheroni constant and ψ is the digamma
function.

To prove Proposition 3.1, we first need a basic lemma
about Dirichlet processes:

Lemma 3.2. The posterior distribution of πvn(vn+1) |
X ∈ Subtree(vn+1) is equal to Beta(1, γ). In other
words, the mass assigned to a child conditioned on a
single datum having already been assigned to that child
is distributed as Beta(1, γ).

Proof. Note that DP (γ) is actually obtained by draw-
ing a sample from DP (γU), where U is uniform on
[0, 1], and assigning the masses of the atoms to the
children of v. Therefore, if we let µ ∼ DP(γU) and
q ∼ Multinomial(µ), then the posterior distribution of
πvn(vn+1) is equivalent to the distribution of µ({p}) |
q = p. By conjugacy, µ | q = p ∼ DP(δp + γU).
Then, by the defining property of a Dirichlet pro-
cess, (µ({p}), µ([0, 1]\{p})) ∼ Dirichlet(1, γ), hence
µ({p}) ∼ Beta(1, γ).

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let X be a data point.
The probability that Depth(X) ≤ d is the
probability that none of the other N − 1 data
points lie in Subtree(vd(X)), which is equal to(

1−
∏d−1
i=0 πvi(vi+1(X))

)N−1
. But

∏d−1
i=0 πvi(vi+1) =

e
∑d−1

i=0 log πvi
(vi+1). The log πvi(vi+1) are independent,

and by Lemma 3.2 they are log Beta(1, γ)-distributed.
Since log Beta(1, γ) has finite variance, it follows that∑d−1
i=0 log πvi(vi+1) = dE[log Beta(1, γ)] + O(

√
d) with

high probability. One can show (see Appendix B) that
E[log Beta(1, γ)] = ψ(1) − ψ(1 + γ) = −ξ − ψ(1 + γ).
Then

P[Depth(X) ≤ d] =
(

1− e−d(ξ+ψ(1+γ))+O(
√
d)
)N−1

.

If we let d = α log(N)
ξ+ψ(1+γ) , then the right-hand-side

above becomes

(
1−N

−α+O
(

1√
log(N)

))N−1
, which

decays quickly from 1 to 0 as α passes the threshold
value of 1. It follows that α = ΘN (1) with high prob-

ability, so d = ΘN

(
log(N)

ξ+ψ(1+γ)

)
with high probability,

which completes the proposition.
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Figure 2: Trees drawn from the prior of the model with N = 100 data points. At the top is the tree generated
by tree-structured stick breaking, and at the bottom is the tree generated by the nCRP. In both cases we used a
hyper-parameter of γ = 1. For the stick breaking model, we further set α = 10 and λ = 1

2 (these are parameters
that do not exist in our model). Note that the tree generated by TSSB is very wide and shallow. A larger value
of α would fix this for N = 100, but increasing N would cause the problem to re-appear.
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Figure 3: Tree depth versus number of data points. We drew a single tree from the prior for the nCRP as well
as for tree-structured stick-breaking, and computed both the maximum and average depth as more data was
added to the tree. The above plots show that the depth of the nCRP increases with the amount of data, whereas
the depth of tree-structured stick-breaking (TSSB) quickly converges to a constant. The different curves for the
TSSB model correspond to different settings of the hyperparameters α and λ.
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In contrast to Proposition 3.1, the depth distribution
of a datum is constant in the TSSB model, which leads
to overly wide and shallow trees. This is illustrated in
Figures 2 and 3, where we show samples from the prior
over tree structures for both our model and the tree-
structured stick breaking model.

The TSSB model uses two extra hyperparameters (α
and λ) that do not occur in the nCRP. By setting α to
Nξ and λ to 1

ψ(1+γ) , it is possible to approximate the

depth distribution of our model with tree-structured
stick breaking. However, the models are still qualita-
tively different. While TSSB can mimic the marginal
depth distribution as measured from the root of the
entire tree, it cannot mimic the depth distribution as
measured from an arbitrary subtree. Separately, set-
ting α to Nξ makes the prior data-dependent, which
is problematic in itself.

4 Implementation for a Hierarchical
Beta Process

We now show how our construction applies in the case
of a hierarchical beta process (Thibaux and Jordan,
2007). Recall that an HBP is a model that generates
an exchangeable sequence {Xn}∞n=1, where each Xn is
a finite collection of features. Typically a beta pro-
cess is used when the feature set is not known a priori
and is potentially infinite (Griffiths and Ghahramani,
2011). For simplicity, however, we will assume that
the feature set is both finite and known in advance, so
that each Xn can be represented as a binary vector of
some length L. Then for each v, θv ∈ [0, 1]L, and our
model is:

1. θRoot(T ),l = 0.5 for all l ∈ {1, . . . , L}

2. θv,l | θp(v),l ∼ Beta(cθp(v),l, c(1− θp(v),l))

3. Xl | {vn(X), θn,l(X)}∞n=0 ∼ Bernoulli(θl), where

θl =
(

lim
n→∞

θn,l

)
Due to space constraints, we cannot give a full account
of how to perform inference in this model. Our goal in
the remainder of this section will be to give a high-level
overview, showing in particular how to tractably deal
with the infinitely long paths created by the nCRP.
A more detailed description of inference is given in
Appendices C and D.

Representing the tree The first issue is how to
represent the tree. The prior specifies infinitely long
paths for each datum, which is problematic for com-
putation. We deal with this using Lemma 4.1, which
implies that if a subtree contains only a single datum,

then we can analytically marginalize out all of the pa-
rameters of that subtree:

Lemma 4.1. The marginal distribution of Xl | (X ∈
Subtree(v), θp(v)) is equal to Bernoulli(θp(v),l). Fur-
thermore, X | (X ∈ Subtree(v), θp(v)) is independent
of Y for any Y 6∈ Subtree(v).

We thus represent T by a truncated tree T ′ as follows:
each internal node v of T ′ corresponds to a node of
T with a non-empty subtree; v keeps track of its la-
tent parameters θv as well as its size. Each leaf w of
T ′ corresponds to a data point X(w), which implic-
itly represents an entire subtree of T that has been
marginalized out using Lemma 4.1; w keeps track of
just its associated data point. Finally, subtrees with
no data are omitted altogether in T ′. As more data is
added to a tree, a new datum Y might end up taking
a path through X(w). In this case, X(w) is replaced
with an internal node that then branches into new leafs
containing X and Y (if the paths of X and Y share
many vertices, then many new internal nodes will be
created).

Incremental Gibbs Sampling Our specific ap-
proach to inference is incremental Gibbs sampling, al-
though other MCMC variants could be used as well.
There are three types of MCMC moves that we con-
sider: adding a data point, removing a data point, and
resampling the latent parameters. We outline each be-
low.

Adding a data point We can add a new data point
Y to T ′ either by making it the child of an already ex-
isting internal node v, or by expanding an external
node w. It is straightforward to calculate the condi-
tional probability in the first case, as it is the proba-
bility that a datum would take the path to v, times
the probability of creating a new table under the CRP
at node v, times the probability of generating Y from
Subtree(v) (which is given by Lemma 4.1). Expanding
an external node is more complicated, as we need to
create new internal nodes and sample their parameters
conditioned on X(w) and Y . We also need to compute
the conditional distribution over how deep X(w) and
Y first branch. Both of these calculations can be made,
and are given in Appendix C.

Removing a data point This step is trivial. We
just need to remove the data point, decrement the sizes
of all ancestor nodes, and delete any nodes that now
have zero data points in their subtree.

Resampling the parameters An algorithm for re-
sampling the latent parameters of an HBP was first
proposed in (Thibaux and Jordan, 2007). Unfortu-
nately, this algorithm is not suited to sampling deep
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Figure 4: Part of a sample from the incremental Gibbs sampler for our model applied to a hierarchical beta
process. The latent parameters at internal nodes are represented by gray lines with white = 0, black = 1. The
nodes with thicker borders represent data. The complete tree is available in the supplementary material.

hierarchies due to general numerical issues with hier-
archical Beta processes. The numerical issues occur
when we are resampling the parameters of a node and
one of the values of the children is very close to 0 or 1.
If a child parameter is very close to 0, for instance, it
actually matters for the likelihood whether the param-
eter is equal to 10−10 or 10−50 (or even 10−1000). Since
we cannot actually distinguish between these numbers
with floating point arithmetic, this introduces innacu-
racies in the posterior that push all of the parameters
closer to 0.5. To deal with this problem, we assume
that we cannot distinguish between numbers that are
less than some distance ε from 0 or 1. If we see such
a number, we treat it as having a censored value (so
it appears as P[θ < ε] or P[θ > 1 − ε] in the likeli-
hood). We then obtain a log-concave conditional den-
sity, for which efficient sampling algorithms exist (Ley-
dold, 2003).

Scalability If there are N data points, each with L
features, and the tree has depth D, then the time it
takes to add a data point is O(NL), the time it takes to
remove a data point is O(L+D), and the time it takes
to resample a single set of parameters is (amortized)
O(L). The dominating operation is adding a node, so
to make a Gibbs update for all data points will take
total time O(N2L).

Results To demonstrate inference in our model, we
created a data set of 53 stick figures determined by
the presence or absence of a set of 29 lines. We then
ran incremental Gibbs sampling for 100 iterations with
hyperparameters of γ = 1.0, c = 20.0. The output of
the final sample is given in Figure 4.

5 Conclusion

We have presented an exchangeable prior over discrete
hierarchies that can flexibly increase its depth to ac-
comodate new data. We have also implemented this
prior for a hierarchical beta process. Along the way,
we identified a common model property — the martin-
gale property — that has interesting and unexpected
consequences in deep hierarchies.

This paper has focused on a general theoretical charac-
terization of infinitely exchangeable distributions over
trees based on the Doob martingale convergence the-
orem, on elucidating properties of deep hierarchical
beta processes as an example of such models, and on
defining an efficient inference algorithm for such mod-
els, which was demonstrated on a small binary data
set. A full experimental evaluation of nonparametric
Bayesian models for hierarchices is outside the scope
of this paper but clearly of interest.
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A Converse to Doob’s Theorem

Proof of Theorem 2.3. We prove each of the parts of
the theorem:

1. E[θv | θp(v)] = θp(v): For any measurable set S of
possibilities for X, we have

E[θv(S) | θp(v)] = E[P[X ∈ S | X ∈ Subtree(v)] | θp(v)]
= P[X ∈ S | X ∈ Subtree(p(v))]

= θv(S).

Since this holds for all S, we also have E[θv |
θp(v)] = θp(v).

2. supn E[|[θn(X)](S)|] < ∞ for all S: this follows
trivially from the fact that θn(X) ∈ [0, 1].

3. If X lies in a Polish space P, then θ is deter-
mined by its value on a countable collection of
sets: If P is Polish, then the space D of prob-
ability measures on P is also Polish in the topol-
ogy generated by sets of the form US,a,b := {µ |
a < µ(S) < b}. In particular, since D is a sep-
arable metric space, it is second-countable, and
so its topology is generated by a countable sub-
collection C0 of the US,a,b. We then claim that
C := {S | US,a,b ∈ C0 for some a, b} is the desired
collection for determining θ. Indeed, suppose that
θ′ 6= θ ∈ D. Since D is Hausdorff, there exists
some US,a,b ∈ C0 with θ ∈ US,a,b and θ′ 6∈ US,a,b,
which in particular implies that θ(S) 6= θ′(S).

4. limn→∞ θn = θ in the topology of weak con-
vergence: Note that θn(S) = E[P[X ∈ S] |
v0, . . . , vn], and θ(S) = E[P[X ∈ S] | v0, v1, . . .].
Therefore, Lévy’s zero-one law guarantees that
limn→∞ θn(S) = θ(S) almost surely for all S ∈ C.
Now suppose that limn→∞ θn(T ) 6= θ(T ) for some
set T . Take a0, b0 such that θ(T ) ∈ (a0, b0) but
limn→∞ θn(T ) 6∈ a0, b0. Thus θ ∈ UT,a0,b0 but
θn 6∈ UT,a0,b0 for infinitely many n. Then by the
previous part, there must be some US,a,b ∈ C0
such that θ ∈ US,a,b but θn 6∈ US,a,b for in-
finitely many n. But this would imply that
limn→∞ θn(S) 6= θ(S), which is a contradiction.
Hence limn→∞ θn(T ) = θ(T ) for all measurable
sets T , as was to be shown.

B Statistics of Beta and Gamma
Functions

Lemma B.1. Let dn ∼ Gamma(αn, 1), en ∼
Gamma(βn, 1), αn+1 = αn + dn, and βn+1 = βn + en.

Then E
[

αn+1

αn+1+βn+1

]
= αn

αn+βn
.
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Proof.

E
[

αn+1

αn+1 + βn+1

]
= Edn,en

[
αn + dn

αn + βn + dn + en

]
= Es

[
Edn

[
αn + dn

αn + βn + s
| dn + en = s

]]
= Es

[
Edn

[
αn + dn

αn + βn + s
| dn ∼ sBeta(αn, βn)

]]
= Es

[
αn + s αn

αn+βn

αn + βn + s

]

= Es
[

αn
αn + βn

]
=

αn
αn + βn

.

Lemma B.2. If X ∼ Beta(α, β), then E[log(X)] =
ψ(α) − ψ(α + β), where ψ is the digamma function
defined by ψ(x) = d

dx log Gamma(x).

Proof. Let F (α) =
∫ α
∞
∫ 1

0
xα̃−1(1 − x)β−1 log(x)dxdα̃.

Then by the fundamental theorem of calculus,
dF
dα = Beta(α, β)E[log(X)]. We claim that F (α) =
Beta(α, β). Indeed, we have

F (α) =

∫ α

∞

∫ 1

0

xα̃−1(1− x)β−1 log(x)dxdα̃

=

∫ 1

0

(1− x)β−1
∫ α

∞
xα̃−1 log(x)dα̃dx

=

∫ 1

0

(1− x)β−1
(
xα̃−1

∣∣α
∞

)
dx

=

∫ 1

0

(1− x)β−1xα−1

= Beta(α, β)

Then it follows that

E[log(X)] =
d
dα Beta(α, β)

Beta(α, β)

=
d

dα
log Beta(α, β)

=
d

dα
(log Gamma(α)− log Gamma(α+ β))

= ψ(α)− ψ(α+ β),

which proves the lemma.

C Properties of Hierarchical Beta
Processes

In this section, we prove Lemma 4.1, and make some
additional calculations regarding the hierarchical beta
process model that will be useful for inference. We
deal with inference itself in the next section.

Proof of Lemma 4.1. Since Xl ∈ {0, 1}, we have
P[Xl = 1 | θv] = E[Xl | θv], hence Xl | θv ∼
Bernoulli(E[Xl | θv]). But

E[Xl | θv] = E
[
Bernoulli

(
lim
n→∞

θn,l(X)
)
| θv
]

= Bernoulli
(
E
[

lim
n→∞

θn,l(X) | θv
])

= Bernoulli(θv,l),

where the last step uses the martingale property.4 This
proves the first part of the lemma. The second part of
the lemma follows from standard facts about directed
graphical models.

Lemma C.1. Let X be a data point with Xl = 0

for all l. Then E[θd0+d(X) | θd0(X)] =
(

c
c+1

)d
θd0 .

Furthermore, if d = max{d′ | vd0+d′(X) = vd0+d′(Y )},

then P[Yl = 1 | d, θd0 , X] is equal to
(

c
c+1

)d
θd0 for

d ≥ 0.

Proof of Lemma C.1. By Lemma 4.1, P[Xl = 1 |
θe(X)] = θe,l. Then, by the conjugacy of the
Beta distribution, θe+1,l(X) | θe,l(X) ∼ Beta(cθe,l +
1, c(1 − θe,l)). It follows that E[θe+1,l(X) | θe,l(X)] =
c
c+1θe,l(X). Iteratively applying this relation yields
the first part of the lemma. The second part of
the lemma then follows by applying Lemma 4.1 with
v = vd0+d.

Lemma C.2. As in Lemma C.1, let X be the all-
zeros vector, suppose that vd0(X) = vd0(Y ), and let
d = max{d′ | vd0+d′(X) = vd0+d′(Y )}. Then

θd0+1,l | (θd0 , X, Yl = 1, d) ∼ Beta(cθd0,l + 1, c(1− θd0,l) + 1)

4In fact, we need something stronger, since the expec-
tation of a limit does not necessarily equal the limit of the
expectation, as can be seen in Example 2 of Section 2.3.
However, if the random variables involved are uniformly
integrable, then a stronger version of Theorem 2.1 implies
that the limit of the expectation is indeed equal to the ex-
pectation of the limit. We then note that since the θv,l are
bounded, they are trivially uniformly integrable.



Manuscript under review by AISTATS 2012

and

θd0+1,l | (θd0 , X, Yl = 0, d) ∼
ω1

ω1 + ω2
Beta(cθd0,l + 2, c(1− θd0,l))

+
ω2

ω1 + ω2
Beta(cθd0,l + 1, c(1− θd0,l) + 1),

where ω1 = c(1 − θd0,l) + 1 and ω2 =

cθd0,l

(
1−

(
c
c+1

)d−1)
.

Proof of Lemma C.2. For brevity, we will drop the
subscript of l on θ, X, and Y . Also, we let r :=(

c
c+1

)d−1
. Then by Bayes’ rule, we have:

p(θd0+1 | θd0 , X, Y = 1, d)

∝ p(Y = 1 | θd0+1, X, d)× p(X | θd0+1)× p(θd0+1 | θd0)

∝ rθd0+1 × (1− θd0+1)× Beta(θd0+1; cθd0 , c(1− θd0))

∝ Beta(θd0 ; cθd0 + 1, c(1− θd0) + 1).

Where we applied Lemma C.1 to compute p(Y = 1 |
θd0+1, X, d), and we applied Lemma 4.1 to compute
p(X | θd0+1. This proves the first part of the assertion.
Similarly, we have

p(θd0+1 | θd0 , X, Y = 0, d)

∝ p(Y = 0 | θd0+1, X, d)× p(X | θd0+1)× p(θd0+1 | θd0)

∝ [1− rθd0+1]× (1− θd0+1)

× Beta(θd0+1; cθd0 , c(1− θd0))

∝ [(1− θd0+1) + (1− r) θd0+1]

× Beta(θd0+1; cθd0 , c(1− θd0) + 1)

∝ (c(1− θd0) + 1) Beta(θd0+1; cθd0 , c(1− θd0) + 2)

+ cθd0 (1− r) Beta(θd0+1; cθd0 + 1, c(1− θd0) + 1),

where the extra terms in the last expression come from
the fact that Beta(·; cθd0 , cθd0 + 2) and Beta(·; cθd0 +
1, c(1−θd0)+1) have different normalization constants.
This completes the second part of the assertion.

D Inference for Hierarchical Beta
Processes

Adding a Data Point

When we add a data point Y , there are two cases to
consider. First, we can add Y as a new child of an
internal node v (this happens if the CRP at that node
creates a new table), or we can add Y to a leaf w that
implicitly represents the subtree containing X(w). Let
Z(Y, v) denote the probability that a new node of T ′
is generated as a child of v and creates the datum Y ,
and let Z(Y,w, d) denote the probability that a datum

first branches from X(w) d levels below w, and that
the resulting datum is Y .

It is straightforward to calculate Z(Y, v) — if the path
to v is given by v0, v1, . . . , vd with vd = v, and Size(v)
denotes the number of data in Subtree(v), then we
have

Z(Y, v) =(
γ

γ + Size(v)

d−1∏
e=0

πve(ve+1)

) ∏
l:Yl=1

θl
∏
l:Yl=0

(1− θl).

Calculating Z(Y,w, d) is a bit trickier. We can easily
compute the probability that the path of a datum goes
through w. Then, in the case that Xl = 0 for all l, we
can use Lemma C.1 to compute the probability that
X and Y first split into unique subtrees at exactly d
levels deeper than w. The joint probability is given by

Z(Y,w, d) =

(
1

γ + Size(v)

d−1∏
e=0

πve(ve+1)

)(
1

1 + γ

)d
γ

1 + γ

×
∏
l:Yl=0

(
1−

(
c

c+ 1

)d
θl

)

×
∏
l:Yl=1

(
c

c+ 1

)d
θl.

The cases where Xl is not identically zero can then be
obtained by symmetry.

The function Z(Y,w, d) is a product of log-concave fac-
tors in d, and is therefore itself log-concave. We can
thus find a rejection sampler with a constant accep-
tance rate (Leydold, 2003), and compute the normal-
ization constant Ẑ(Y,w) of the enveloping function.

Now, to perform incremental Gibbs sampling, we add
a data point to an internal node with probability pro-
portional to Z(Y, v), and we attempt to expand an ex-
ternal node with probability proportional to Ẑ(Y,w).
In the case that we try to expand an external node, we
perform rejection sampling to determine what depth
the two data points should branch at. If the sampler
rejects, then we reject the Gibbs proposal, otherwise
we insert the new data point at the given depth. We
then need to sample all of the parameters at all of the
newly created internal nodes, which can be done using
Lemma C.2.

Resampling Parameters

As noted before, there exist numerical issues when pa-
rameters are too close to either 0 or 1. We deal with
this problem by assuming that we cannot distinguish
between numbers that are less than some distance ε
from 0 or 1. If we see such a number, we treat it as
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having a censored value (so it appears for instance as
P[θ < ε] in the likelihood). A straightforward calcula-
tion shows that

P[θv,l < ε | θp(v),l] ≈
εcθp(v),l

cθp(v),l
,

and similarly

P[θv,l > 1− ε | θp(v),l] ≈
εc(1−θp(v),l)

c(1− θp(v),l)
.

With this strategy for dealing with the numerical issue,
we now turn to the actual sampling algorithm.

The θd,k can be dealt with independently for different
values of k, so we will restrict our attention to a fixed
value of k. Suppose that θ is the parameter we want
to sample, θ0 is the value of its parent, θ1, . . . , θm are
the values of its children that are internal nodes, and
X1, . . . , Xp are the values of its children that are ex-
ternal nodes. Let a =

∑p
i=1Xi and b =

∑p
i=1 1−Xi.

Then the likelihood for θ is given by

p(θ | θ0, {θ1}mi=1, a, b) ∝ θcθ0+a−1(1− θ)c(1−θ0)+b−1

×
∏

i:ε≤θi≤1−ε

θcθ−1i (1− θi)c(1−θ)−1

Beta(cθ, c(1− θ))

×
∏
i:θi<ε

εcθ

cθ

×
∏

i:θi>1−ε

εc(1−θ)

c(1− θ)
.

One can check that this function is either (i) log-
concave, (ii) has infinite density at θ = 0, or (iii) has
infinite density at θ = 1. In the first case, we can sam-
ple from it efficiently (Leydold, 2003). In the second
case, θ is very likely to be less than ε; since our sampler
treats all numbers in the interval [0, ε) equivalently, we
can arbitrarily set θ to 0. Similarly, in the third case,
we can set θ to 1.


