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Resource-Constrained Learning

How do we solve statistical problems with limited resources?

computation (Natarajan, 1995; Berthet & Rigollet, 2013; Zhang et al.,
2014; Foster et al., 2015)

privacy (Kasiviswanathan et al., 2011; Duchi et al., 2013)

communication / memory (Zhang et al., 2013; Shamir, 2014; Garg et al.,
2014; Braverman et al., 2015)
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Setting

Sparse linear regression in Rd :

Y (i) = 〈w∗,X (i)〉+ ε(i)

‖w∗‖0 = k , k � d

Memory constraint:

(X (i),Y (i)) observed as read-only stream

Only keep b bits of state Z (i) between successive observations

W ∗

X (1)

Y (1)

Z (1)

X (2)

Y (2)

Z (2)
b

X (3)

Y (3)

Z (3)
b . . .
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Motivating Question

If we have enough memory to represent the answer, can we also
efficiently learn the answer?
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Problem Statement

How much data n is needed to obtain estimator ŵ with

E[‖ŵ−w∗‖2
2]≤ ε?
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2]≤ ε?

Classical case (no memory constraint):

Theorem (Wainwright, 2009)

k
ε

log(d). n .
k
ε

log(d)
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How much data n is needed to obtain estimator ŵ with

E[‖ŵ−w∗‖2
2]≤ ε?

Classical case (no memory constraint):

Theorem (Wainwright, 2009)

k
ε

log(d). n .
k
ε

log(d)

Achievable with Õ(d) memory (Agarwal et al., 2012; S., Wager, & Liang, 2015).
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Theorem (Wainwright, 2009)

k
ε

log(d). n .
k
ε

log(d)

With memory constraints b:

Theorem (S. & Duchi, 2015)

k
ε

d
b
. n .

k
ε2

d
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k
ε

log(d). n .
k
ε

log(d)

With memory constraints b:

Theorem (S. & Duchi, 2015)

k
ε

d
b
. n .

k
ε2

d
b

Exponential increase if b� d !
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Problem Statement

How much data n is needed to obtain estimator ŵ with

E[‖ŵ−w∗‖2
2]≤ ε?

Classical case (no memory constraint):

Theorem (Wainwright, 2009)

k
ε

log(d). n .
k
ε

log(d)

With memory constraints b:

Theorem (S. & Duchi, 2015)

k
ε

d
b
. n .

k
ε2

d
b

[Note: up to log factors; assumes k log(d)� b ≤ d ]
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Proof Overview

Lower bound:

information-theoretic
strong data-processing inequality

W ∗ X ,Y Z
d

1

main challenge: dependence between X ,Y

Upper bound:
count-min sketch + `1-regularized dual averaging
more regularization→ easier sketching problem
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Lower Bound Construction

Split coordinates into k blocks of size d/k

w∗ in each block: single non-zero coordinate J, ±δ with equal probability

Direct sum argument: reduce to k = 1

J = 2

d
k

Estimation to testing:

E[‖w∗− ŵ‖2
2]≥

δ 2

2
P[J 6= Ĵ]

Looking ahead: bound KL between Pj and base distribution P0

J. Steinhardt & J. Duchi (Stanford) Memory-Constrained Sparse Regression July 6, 2015 7 / 11



Lower Bound Construction

Split coordinates into k blocks of size d/k

w∗ in each block: single non-zero coordinate J, ±δ with equal probability

Direct sum argument: reduce to k = 1

J = 2

d
k

Estimation to testing:

E[‖w∗− ŵ‖2
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2]≥

δ 2

2
P[J 6= Ĵ]
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Some Information Theory

Let X ∼ Uniform({±1}d)

Let Pj(Z (1:n)) be distribution conditioned on J = j

Let P0(Z (1:n)) be distribution with Y independent of X

Assouad’s method:

P[J 6= Ĵ]≥ 1
2
−

√√√√ 1
d

d

∑
j=1

Dkl
(
P0(Z (1:n)) || Pj(Z (1:n))

)

2δ

Xj : −1 +1

Key fact: (Y ,Xj) independent of X¬j under Pj

Intuition: Dkl (P0 || Pj) small unless Z stores info about Xj ; need to store
majority of Xj to make average Dkl small.
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Strong Data-Processing Inequality

Focus on a single index Z = Z (i), with ẑ = z(1:i−1) fixed.

Proposition
For any ẑ,

Dkl (P0(Z | ẑ) || Pj(Z | ẑ))

Plug into Assouad:
1
d

d

∑
j=1

Dkl (P0 || Pj)

≤ 4δ 2

d

d

∑
j=1

I(Xj ;Z ,Y | Ẑ )

Only get 4δ 2b
d bits per round!
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Dkl (P0(Z | ẑ) || Pj(Z | ẑ)) ≤ 4δ
2I(Xj ;Z | Y , Ẑ = ẑ)

≤ 4δ
2I(Xj ;Z ,Y | Ẑ = ẑ)

Plug into Assouad:
1
d

d

∑
j=1

Dkl (P0 || Pj) ≤
4δ 2

d

d

∑
j=1

I(Xj ;Z ,Y | Ẑ )

≤ 4δ 2

d
I(X ;Z ,Y | Ẑ )︸ ︷︷ ︸

b+O(1)

Only get 4δ 2b
d bits per round!
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Proposition
For any ẑ,
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2I(Xj ;Z | Y , Ẑ = ẑ)
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Upper Bound

Solve `1-regularized dual averaging problem (Xiao, 2010), λ � 1:

w(i) = argminw

{
〈θ (i),w〉+λ

√
n‖w‖1 +

1
2η
‖w‖2

2

}
,

θ
(i) =

i−1

∑
i ′=1

x(i ′)(y(i ′)−〈w(i ′),x(i ′)〉).

Hard part: determine support of w(i).

Need to distinguish |θj | ≥ λ
√

n (signal) from |θj | ≈
√

n (noise)

Can use count-min sketch, memory usage ≈ d log(d)
λ 2

=⇒ regularization decreases computation; seen before in `2 case
(Shalev-Shwartz & Zhang, 2013; Bruer et al., 2014)
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Discussion

Summary:

Upper and lower bounds on memory-constrained regression

Lower bound: extend data processing inequality to handle covariates

Upper bound: use `1-regularizer to reduce to sketching

Future work:

Close the gap (kd/bε vs kd/bε2)

Weaken upper bound assumptions
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