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Resource-Constrained Learning

How do we solve statistical problems with limited resources?

@ computation (Natarajan, 1995; Berthet & Rigollet, 2013; Zhang et al.,
2014; Foster et al., 2015)

@ privacy (Kasiviswanathan et al., 2011; Duchi et al., 2013)

@ communication / memory (Zhang et al., 2013; Shamir, 2014; Garg et al.,
2014; Braverman et al., 2015)
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Setting

Sparse linear regression in RY:
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o |[wHlo=k k< d
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|
Motivating Question

If we have enough memory to represent the answer, can we also
efficiently learn the answer?
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N
Problem Statement

How much data n is needed to obtain estimator w with

E[||# —w"||3] < 7
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How much data n is needed to obtain estimator w with
E[||# — w*||5] < &7

Classical case (no memory constraint):

Theorem (Wainwright, 2009)

k
“log(d) S n S - log(d)
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Classical case (no memory constraint):

Theorem (Wainwright, 2009)

k
“log(d) S n S - log(d)

o x

Achievable with O(d) memory (Agarwal et al., 2012; S., Wager, & Liang, 2015).
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How much data n is needed to obtain estimator w with
E[||# — w*||5] < &7

Classical case (no memory constraint):

Theorem (Wainwright, 2009)
K K
€

Zlog(d) S n S~ log(0)
With memory constraints b:

Theorem (S. & Duchi, 2015)
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Problem Statement

How much data n is needed to obtain estimator w with
E[||# — w*||5] < &7

Classical case (no memory constraint):

Theorem (Wainwright, 2009)

LSfe)
£ b

Exponential increase if b < d!
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N
Problem Statement

How much data n is needed to obtain estimator w with
E[||# — w*||5] < &7

Classical case (no memory constraint):

Theorem (Wainwright, 2009)

With memory constraints b:

Theorem (S. & Duchi, 2015)

kd < kd

eEb™ ~e€%b
[Note: up to log factors; assumes klog(d) < b < d]
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N
Proof Overview

@ Lower bound:

e information-theoretic
e strong data-processing inequality

e main challenge: dependence between X, Y
@ Upper bound:

e count-min sketch + ¢'-regularized dual averaging
@ more regularization — easier sketching problem
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Lower Bound Construction

@ Split coordinates into k blocks of size d/k

ceococececee
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Lower Bound Construction

@ Split coordinates into k blocks of size d/k

@ w* in each block: single non-zero coordinate J, =6 with equal probability
@ Direct sum argument: reduce to k = 1
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@ /=2
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o
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Lower Bound Construction

@ Split coordinates into k blocks of size d/k

@ w* in each block: single non-zero coordinate J, =6 with equal probability
@ Direct sum argument: reduce to k = 1

(@]
@ /=2
i s
d
| @ |
H [ )
[ ]
L @]

@ Estimation to testing:

o 82
Efljw” —w|lz] = - PlJ # J]
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Lower Bound Construction

@ Split coordinates into k blocks of size d/k

@ w* in each block: single non-zero coordinate J, =6 with equal probability
@ Direct sum argument: reduce to k = 1

(@]
@ /=2
i s
d
| @ |
H [ )
[ ]
L @]

@ Estimation to testing: 52
E[llw" - w[5] > Pl # J]
Looking ahead: bound KL between P; and base distribution Py
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Some Information Theory

o Let X ~ Uniform({£119)
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Some Information Theory

o Let X ~ Uniform({£119)

26
o Let P;(Z("") pe distribution conditioned on J = j _4};2{¥\
o Let Py(Z2(1") be distribution with Y independent of X ;H\

@ Assouad’s method:

d
PUA 32 5~ |5 ) D (Ra(20) | A(20)

=1
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-
Some Information Theory

@ Let X ~ Uniform({£1}9)
o Let P;(Z("") pe distribution conditioned on J = j o
o Let Py(Z(1"") be distribution with Y independent of X
@ Assouad’s method:

A 1 1
P >__ |-
e N7

d
D (Po(Z() || F(Z(1:))
=1

@ Key fact: (Y, X;) independent of X_,; under P;

e Intuition: Dy (Po || P;) small unless Z stores info about Xj; need to store
majority of X; to make average Dy small.
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-
Strong Data-Processing Inequality

Focus on a single index Z = Z(), with 2 = z(17~) fixed.
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Strong Data-Processing Inequality

Focus on a single index Z = Z(), with 2 = z(17~) fixed.

Proposition
Forany 2,
Du(Po(Z12) || P(Z]2)) <4821(X;Z| V.2 = 2)

mutual information
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1 d
P Y Du(Po | P)
=1
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Strong Data-Processing Inequality

Focus on a single index Z = Z(), with 2 = z(17~) fixed.

Proposition
Forany 2,
Du(Po(Z | 2) || P(Z]2)) < 48%U(X;:Z| Y, 2 =2)
<a32U(X;2,Y | 2=32)
Plug into Assouad:

1 46% & 5
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Strong Data-Processing Inequality

Focus on a single index Z = Z(), with 2 = z(17~) fixed.

Proposition
Forany 2,
Du(Po(Z]2) || P(Z | 2)) <48%(X:Z| Y, 2 =2)
<a32U(X;2,Y | 2=32)
Plug into Assouad:
1 46% & 5
EZDkl(PO | P) < TZ’(XJ;Z:Y’Z)
j=1 j=
452 N
<—I(X;2,Y]|2)
d ———
b+0(1)

Only get %Zb bits per round!
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|
Upper Bound

Solve ¢'-regularized dual averaging problem (Xiao, 2010), A > 1:
. 1
w9 argrin, { (60, w) + 4] + 1wl

i—1
() — Z xO () — () Xy,

i'=1
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w0 —argrin, { (60, w) + Al + 51wl |

i—1
() — Z xO () — () Xy,

i'=1

Hard part: determine support of w().

@ Need to distinguish |6;| > A+/n (signal) from |6;]| = v/n (noise)

. dlog(d
@ Can use count-min sketch, memory usage ~ (}?2( )
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Solve ¢'-regularized dual averaging problem (Xiao, 2010), A > 1:
. . 1
w0 —argrin, { (60, w) + Al + 51wl |

i—1
() — Z xO () — () Xy,

i'=1

Hard part: determine support of w().

@ Need to distinguish |6;| > A+/n (signal) from |6;]| = v/n (noise)

. dlog(d
@ Can use count-min sketch, memory usage ~ (}?2( )

— regularization decreases computation; seen before in ¢? case
(Shalev-Shwartz & Zhang, 2013; Bruer et al., 2014)
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Discussion

Summary:
@ Upper and lower bounds on memory-constrained regression
@ Lower bound: extend data processing inequality to handle covariates
@ Upper bound: use ¢'-regularizer to reduce to sketching

Future work:
@ Close the gap (kd/be vs kd/be?)
@ Weaken upper bound assumptions
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