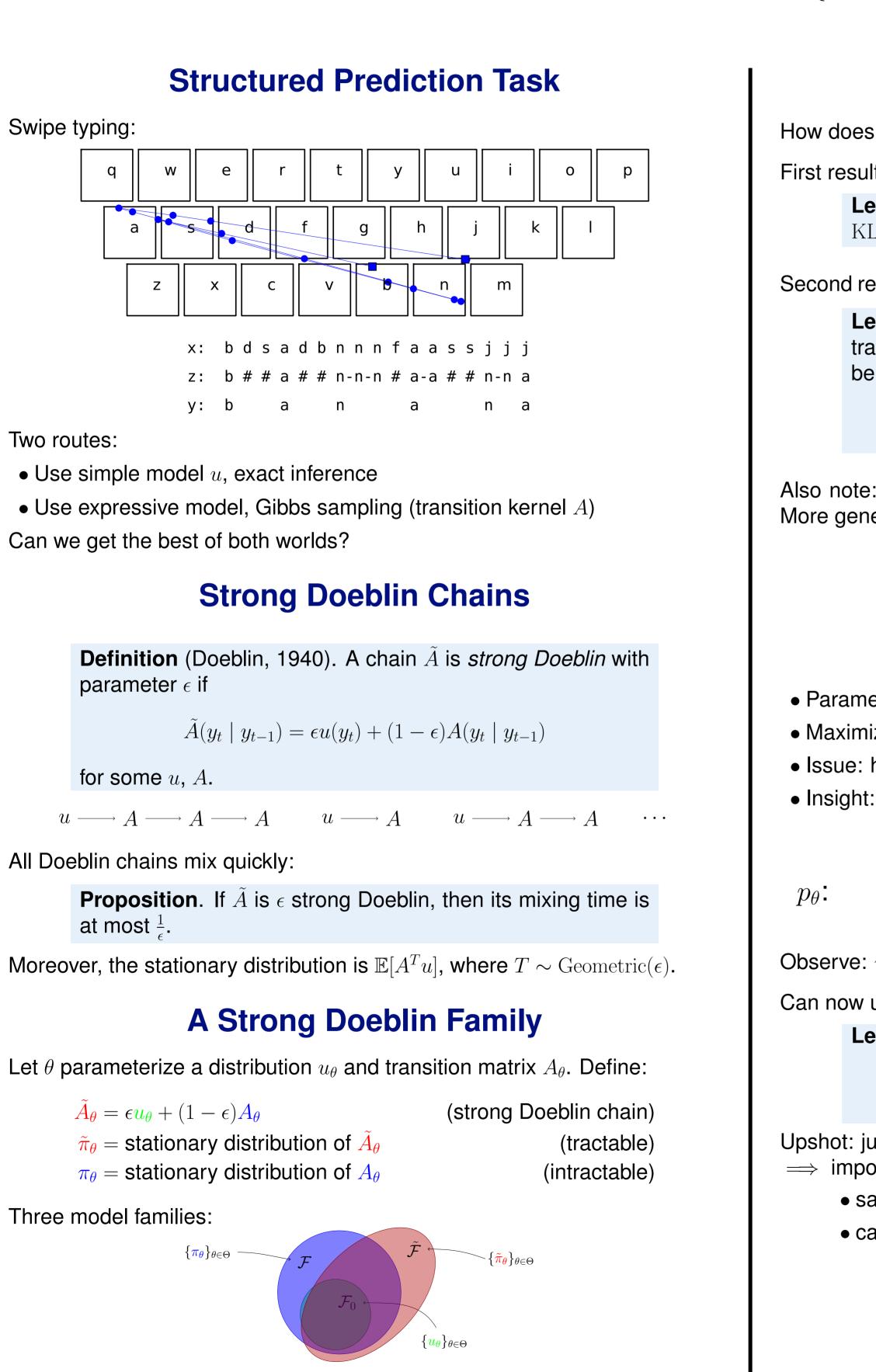
Learning Fast-Mixing Models for Structured Prediction



Jacob Steinhardt **Percy Liang**

{jsteinhardt,pliang}@cs.stanford.edu

Analysis of \mathcal{F}

How does $\tilde{\mathcal{F}}$ relate to \mathcal{F} ?

First result: $\tilde{\mathcal{F}}$ approaches \mathcal{F} as $\epsilon \to 0$.

Lemma. For any fixed u, A, as $\epsilon \to 0$, $KL(\tilde{\pi}_{\theta} \parallel \pi_{\theta})$ and KL $(\pi_{\theta} \parallel \tilde{\pi}_{\theta})$ both approach 0 monotonically.

Second result: $\tilde{\mathcal{F}}$ well-approximates the elements of \mathcal{F} with mixing time $\ll \frac{1}{\epsilon}$.

Lemma. Let D_{γ^2} denote χ^2 -divergence and $\gamma(A)$ be the spectral gap of A. Let π be the stationary distribution of A and $\tilde{\pi}$ be the stationary distribution of \tilde{A} . Then

$$D_{\chi^2}(\pi \| \tilde{\pi}) \le \frac{\epsilon}{\gamma(A)} D_{\chi^2}(\pi \| u).$$

Also note: if each u has an A that leaves it invariant, then $\tilde{\mathcal{F}}$ contains \mathcal{F}_0 . More generally, $\tilde{\mathcal{F}} \supseteq \mathcal{F} \cap \mathcal{F}_0$.

Maximum-Likelihood Learning

• Parameterize strong Doeblin distributions $\tilde{\pi}_{\theta}$

• Maximize log-likelihood: $L(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log \tilde{\pi}_{\theta}(y^{(i)})$

• Issue: hard to compute $\nabla L(\theta)$

• Insight: interpret Markov chain as latent variable model:

Observe: $\tilde{\pi}_{\theta}(y) = p_{\theta}(y_T = y), T \sim \text{Geometric}(\epsilon)$

Can now use standard lemma about marginal likelihood:

Lemma. For any fixed *y*,

$$\frac{\partial \log p_{\theta}(y_T = y)}{\partial \theta} = \mathbb{E}_{y_{1:T} \sim p_{\theta}} \left[\frac{\partial \log p_{\theta}(y_{1:T})}{\partial \theta} \middle| y_T = y \right].$$

Upshot: just need to sample trajectories that end at y. \implies importance sampling

- sample $y_{1:T-1}$ unconditionally, importance weight by $A(y_T = y \mid y_{T-1})$
- can also assign weights to each prefix $y_{1:t-1}$ to reduce variance

Note y is a deterministic function y = f(z). Goal: learn model $p(z \mid x)$ that maximizes

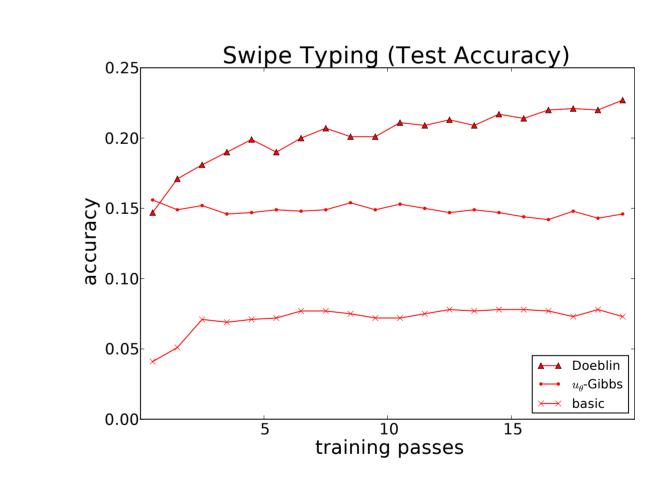
Models:

$$A(z_t \mid z_{t-1}, x)$$
 (C

Comparisons:

- (compute gradients assuming exact inference)
- basic: Gibbs sampling (A) • u_{θ} -Gibbs: Gibbs with random restarts from u
- Doeblin: our method

Results:



- Policy gradient (Sutton et al., 1999)
- 2011; Huang et al., 2012)
- & Tweedie, 1998)

Reproducible experiments on CodaLab: codalab.org/worksheets The first author was supported by the Hertz foundation and by the NSF.

Experiments

Structured prediction task from before (swipe typing, see first panel).

$$p(y \mid x) = \sum_{z \in f^{-1}(y)} p(z \mid x)$$

 $u(z \mid x)$ (bigram, dynamic program): $(z_1) - (z_2) - (z_3) - (z_4)$

- dictionary, Gibbs): (z_1)

Related Work

• Inference-aware learning (Barbu, 2009; Domke, 2011; Stoyanov et al.,

• Strong Doeblin analysis (Doeblin, 1940; Propp & Wilson, 1996; Corcoran

Reproducibility