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Structured Prediction Task
Swipe typing:
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xz

x:  b d s a d b n n n f a a s s j j j

z:  b # # a # # n-n-n # a-a # # n-n a

y:  b     a     n       a       n   a

Two routes:

• Use simple model u, exact inference

• Use expressive model, Gibbs sampling (transition kernel A)

Can we get the best of both worlds?

Strong Doeblin Chains

Definition (Doeblin, 1940). A chain Ã is strong Doeblin with
parameter ε if

Ã(yt | yt−1) = εu(yt) + (1− ε)A(yt | yt−1)

for some u, A.

u A A A u A u A A · · ·

All Doeblin chains mix quickly:

Proposition. If Ã is ε strong Doeblin, then its mixing time is
at most 1

ε .

Moreover, the stationary distribution is E[ATu], where T ∼ Geometric(ε).

A Strong Doeblin Family
Let θ parameterize a distribution uθ and transition matrix Aθ. Define:

Ãθ = εuθ + (1− ε)Aθ (strong Doeblin chain)
π̃θ = stationary distribution of Ãθ (tractable)
πθ = stationary distribution of Aθ (intractable)

Three model families:

F0

{uθ}θ∈Θ

F
{πθ}θ∈Θ F̃ {π̃θ}θ∈Θ

Analysis of F̃
How does F̃ relate to F?

First result: F̃ approaches F as ε→ 0.

Lemma. For any fixed u,A, as ε → 0, KL (π̃θ ‖ πθ) and
KL (πθ ‖ π̃θ) both approach 0 monotonically.

Second result: F̃ well-approximates the elements of F with mixing time� 1
ε .

Lemma. LetDχ2 denote χ2-divergence and γ(A) be the spec-
tral gap of A. Let π be the stationary distribution of A and π̃
be the stationary distribution of Ã. Then

Dχ2(π‖π̃) ≤
ε

γ(A)
Dχ2(π‖u).

Also note: if each u has an A that leaves it invariant, then F̃ contains F0.
More generally, F̃ ⊇ F ∩ F0.

Maximum-Likelihood Learning

• Parameterize strong Doeblin distributions π̃θ
•Maximize log-likelihood: L(θ) = 1

n

∑n
i=1 log π̃θ(y

(i))

• Issue: hard to compute ∇L(θ)
• Insight: interpret Markov chain as latent variable model:

pθ: y1

uθ

y2 · · · yT
Aθ Aθ Aθ

Observe: π̃θ(y) = pθ(yT = y), T ∼ Geometric(ε)

Can now use standard lemma about marginal likelihood:

Lemma. For any fixed y,

∂ log pθ(yT = y)

∂θ
= Ey1:T∼pθ

[
∂ log pθ(y1:T )

∂θ

∣∣∣∣yT = y

]
.

Upshot: just need to sample trajectories that end at y.
=⇒ importance sampling

• sample y1:T−1 unconditionally, importance weight by A(yT = y | yT−1)
• can also assign weights to each prefix y1:t−1 to reduce variance

Experiments
Structured prediction task from before (swipe typing, see first panel).
Note y is a deterministic function y = f (z).

Goal: learn model p(z | x) that maximizes

p(y | x) =
∑

z∈f−1(y)

p(z | x)

Models:
u(z | x) (bigram, dynamic program): z1 z2 z3 z4

A(zt | zt−1, x) (dictionary, Gibbs): z1 z2 z3 z4

Comparisons:

• basic: Gibbs sampling (A)

(compute gradients assuming exact inference)

• uθ-Gibbs: Gibbs with random restarts from u

• Doeblin: our method

Results:
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Related Work

• Policy gradient (Sutton et al., 1999)

• Inference-aware learning (Barbu, 2009; Domke, 2011; Stoyanov et al.,
2011; Huang et al., 2012)

• Strong Doeblin analysis (Doeblin, 1940; Propp & Wilson, 1996; Corcoran
& Tweedie, 1998)

Reproducibility
Reproducible experiments on CodaLab: codalab.org/worksheets
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